chihiroasleaf
  • chihiroasleaf
If x and y are real numbers, with \[x^3 - 3xy^2 = 44\] and \[ y^3 - 3x^2y = 8 \] What is the value of \[ x^2 + y^2 \]
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

chihiroasleaf
  • chihiroasleaf
If we add both equations, we'll get \[x^3 - 3xy^2 + 3x^2y - y^3 = 52 \] While \[ (x-y)^3 = x^3 - 3x^2y + 3xy ^2 - y^3 \]
mathmath333
  • mathmath333
u have to substract both equations
chihiroasleaf
  • chihiroasleaf
Umm What I mean above is If we subtract, we get \[ x^3 - 3xy^2 + 3x^2y - y^3 = 36\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ParthKohli
  • ParthKohli
\[(x+iy)^3 = x^3 + 3x^2y i - 3xy^2 - iy^3 = (x^3 - 3x y^2) + (3x^2 y - y^3) i \]\[(x-iy)^3 = (x^3 - 3x y^2) + (y^3 - 3x ^2 y) i\]\[x^2 + y^2 = (x+iy)(x-iy)\]
ParthKohli
  • ParthKohli
\[\Rightarrow (x+iy)^3 = 44-8i, (x-iy)^3 = 44 + 8i\]\[\Rightarrow (x^2+y^2)^3 = (44+8i)(44-8i) = 2000\]\[\Rightarrow x^2 + y^2 = \sqrt[3]{2000}\]
chihiroasleaf
  • chihiroasleaf
Thank you @ParthKohli :) How did you get the idea?
ParthKohli
  • ParthKohli
I don't know either. Maybe the \(x^2 + y^2\) triggered me and I started thinking along the lines of complex numbers.
chihiroasleaf
  • chihiroasleaf
I didn't think to use conplex numbers :-|

Looking for something else?

Not the answer you are looking for? Search for more explanations.