chihiroasleaf
  • chihiroasleaf
If x and y are real numbers, with \[x^3 - 3xy^2 = 44\] and \[ y^3 - 3x^2y = 8 \] What is the value of \[ x^2 + y^2 \]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
chihiroasleaf
  • chihiroasleaf
If we add both equations, we'll get \[x^3 - 3xy^2 + 3x^2y - y^3 = 52 \] While \[ (x-y)^3 = x^3 - 3x^2y + 3xy ^2 - y^3 \]
mathmath333
  • mathmath333
u have to substract both equations
chihiroasleaf
  • chihiroasleaf
Umm What I mean above is If we subtract, we get \[ x^3 - 3xy^2 + 3x^2y - y^3 = 36\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ParthKohli
  • ParthKohli
\[(x+iy)^3 = x^3 + 3x^2y i - 3xy^2 - iy^3 = (x^3 - 3x y^2) + (3x^2 y - y^3) i \]\[(x-iy)^3 = (x^3 - 3x y^2) + (y^3 - 3x ^2 y) i\]\[x^2 + y^2 = (x+iy)(x-iy)\]
ParthKohli
  • ParthKohli
\[\Rightarrow (x+iy)^3 = 44-8i, (x-iy)^3 = 44 + 8i\]\[\Rightarrow (x^2+y^2)^3 = (44+8i)(44-8i) = 2000\]\[\Rightarrow x^2 + y^2 = \sqrt[3]{2000}\]
chihiroasleaf
  • chihiroasleaf
Thank you @ParthKohli :) How did you get the idea?
ParthKohli
  • ParthKohli
I don't know either. Maybe the \(x^2 + y^2\) triggered me and I started thinking along the lines of complex numbers.
chihiroasleaf
  • chihiroasleaf
I didn't think to use conplex numbers :-|

Looking for something else?

Not the answer you are looking for? Search for more explanations.