A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

anonymous

  • one year ago

check my work

  • This Question is Closed
  1. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Q:Find \[\iint_\limits S (\vec \nabla \times \vec F).\hat n \space ds\] where \[\vec F=(x-z)\hat i+(x^3+yz)\hat j+3xy^2 \hat k\] and S is the surface of the cone \[z=a-\sqrt{x^2+y^2}\] above the xy plane Now \[\vec \nabla \times \vec F=\left|\begin{matrix}\hat i & \hat j & \hat k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z}\\x-z & x^3+yz & 3xy^2\end{matrix}\right|\]\[\vec \nabla \times \vec F=\hat i(6xy-y)-\hat j(3y^2+1)+3x^2 \hat k=y(6x-1)\hat i-(3y^2+1)\hat j+3x^2 \hat k\] We can re-write our equation for cone as \[\sqrt{x^2+y^2}+z=a\] Which is of the form \[\phi(x,y,z)=c\] Equation of a level surface, where phi is a scalar function of x,y,z and c is a constant In this case, a vector normal to the surface is given by \[\vec n=\vec \nabla \phi=(\hat i \frac{\partial \phi}{\partial x}+\hat j \frac{\partial \phi}{\partial y}+\hat k \frac{\partial \phi}{\partial z})\]\[\vec n=\frac{1}{2\sqrt{x^2+y^2}}.2x \hat i+\frac{1}{2\sqrt{x^2+y^2}}.2y \hat j+\hat k=\frac{x \hat i}{\sqrt{x^2+y^2}}+\frac{y \hat j}{\sqrt{x^2+y^2}}+\hat k\] \[|\vec n|=\sqrt{\frac{x^2}{x^2+y^2}+\frac{y^2}{x^2+y^2}+1^2}=\sqrt{\frac{x^2+y^2}{x^2+y^2}+1}=\sqrt{1+1}=\sqrt{2}\] \[\hat n=\frac{\vec n}{|\vec n|}=\frac{1}{\sqrt{2}}(\frac{x \hat i}{\sqrt{x^2+y^2}}+\frac{y \hat j}{\sqrt{x^2+y^2}}+\hat k)\] When \[z=0\] We have \[x^2+y^2=a^2\] This is the projection of the cone in xy-plane (circle of radius a in the xy-plane), |dw:1443798608113:dw| Thus we convert our surface integral... \[\iint_\limits S (\vec \nabla \times \vec F). \hat n \space ds=\iint_\limits {R}(\vec \nabla \times \vec F). \hat n \space \frac{dxdy}{\hat n.\hat k}\] where R is the region covered by circle of radius a \[\therefore \hat n=\frac{1}{\sqrt{2}}(\frac{x}{a}\hat i+\frac{y}{a}\hat j+\hat k)=\frac{1}{\sqrt{2}a}(x \hat i+y \hat j+a \hat k)\] Now \[(\vec \nabla \times \vec F).\hat n=\frac{1}{\sqrt{2}a}(y(6x^2-x)-(3y^3+y)+3ax^2)\] Also \[\hat n . \hat k=\frac{1}{\sqrt{2}} \implies \frac{1}{\hat n . \hat k}=\sqrt{2}\]\[(\vec \nabla \times \vec F).\hat n \frac{1}{\hat n . \hat k}=\frac{1}{a}(y(6x^2-x)-(3y^3+y)+3ax^2)\]\[\frac{(\vec \nabla \times \vec F).\hat n}{\hat n . \hat k}=\frac{1}{a}(y(6x^2-x-1)-3y^3+3ax^2)\] Thus our surface integral is \[\therefore \frac{1}{a}\iint_\limits R [y(6x^2-x-1)-3y^3+3ax^3]dydx\] Using a short hand notation for the left side \[\iint_\limits R =\frac{1}{a} \int\limits_{-a}^{a}[\int\limits_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}((6x^2-x-1)y-3y^3+3ax^2)dy]dx\] \[\iint_\limits R=\frac{1}{a}\int\limits_{-a}^{a}[(6x^2-x-1)\int\limits_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}ydy-3\int\limits_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}y^3dy+3ax^2\int\limits_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}dy]dx\] \[\iint_\limits R=\frac{1}{a}\int\limits_{-a}^{a}[0+0+6ax^2\int\limits_{0}^{\sqrt{a^2-x^2}}dy]dx=\frac{1}{a}\int\limits_{-a}^{a}6ax^2\sqrt{a^2-x^2}dx\] \[\iint_{R}=6\int\limits_{-a}^{a}x^2{\sqrt{a^2-x^2}}dx=12\int\limits_{0}^{a}x^2\sqrt{a^2-x^2}dx\]\[x=a\sin(\theta)\]\[\therefore dx=a\cos(\theta)d \theta\] The limits transform as \[0 \rightarrow 0 \space , \space a \rightarrow \frac{\pi}{2}\] \[\iint_\limits R=12 \int\limits_{0}^{\frac{\pi}{2}}a^2\sin^2(\theta).a^2\cos^2(\theta)d \theta=12a^4\int\limits_{0}^{\frac{\pi}{2}}(\sin(\theta)\cos(\theta))^2d \theta\] \[\iint_\limits R=3a^4 \int\limits_{0}^{\frac{\pi}{2}}(2\sin(\theta)\cos(\theta))^2d \theta=3a^4\int\limits_{0}^{\frac{\pi}{2}}\sin^2(2 \theta)d \theta\]\[\iint_\limits R=\frac{3a^4}{2}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta=\frac{3a^4}{2}[\theta-\frac{\sin(4 \theta)}{4}]_{0}^{\frac{\pi}{2}}\]\[\iint_\limits R=\frac{3a^4}{2}[\frac{\pi}{2}-\frac{\sin(2\pi)}{4}-(0+\frac{\sin(0)}{4})]=\frac{3a^4}{2}(\frac{\pi}{2}+0+0+0)=\frac{3 \pi a^4}{4}\]

  2. Jhannybean
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    You must've got an integration error somewhere right? :P

  3. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Yikes!! Don't say such scary stuff, I miss the questions in school! Questions like these in college take a lot of time for a single question :(

  4. Michele_Laino
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    I have computed the integral in a different way, and I got the same result

  5. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    sweet :D

  6. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.