Will METAL!! Verify the identity. cos (x - y) - cos (x + y) = 2 sin x sin y

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Will METAL!! Verify the identity. cos (x - y) - cos (x + y) = 2 sin x sin y

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

we'll be using two rules here: cos(A+B) = cosA*cosB - sinA*sinB cos(A-B) = cos(A)*cos(B) + sin(A)*sin(B)
cos(x-y) = cosx*cosy + sinx*siny cos(x+y) = cosx*cosy - sinx*siny therefore: cos(x-y) - cos(x+y) = cosx*cosy + sinx*siny - (cosx*cosy - sinx*siny) = 2sinx*siny let me know if anything needs to be clarified
wait could you break that down a bit.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

sure. start with cos (x - y) = cosx*cosy + sinx*siny is that clear?
yes
cos (x + y) = cosx*cosy - sinx*siny is that clear?
yes
good, now we just subtract cos(x-y) - cos(x+y) = cosx*cosy + sinx*siny - (cosx*cosy - sinx*siny) is this part clear?
alright what's next after that?
just basic algebra after that
notice how the cosines cancel out
|dw:1443824395082:dw|
|dw:1443824403678:dw|
oh ok, could we do. Using the given zero, find all other zeros of f(x). -2i is a zero of f(x) = x4 - 21x2 - 100
@freckles having a bit of a brain fart about complex zeros
lol ok thats fine. one min brb
I remember that complex zeros come in pairs, so if -2i is a zero, then +2i must also be a zero
so, we can write an expression using each root x + 2i = 0 x - 2i = 0 then I'm guessing we multiply these two together to get (x+2i)(x-2i) = 0 x^2 - (2i)^2 = x^2 - (-4) = x^2 + 4 as our polynomial
then we take our original function f(x) = x4 - 21x2 - 100 divide by the polynomial we just got x^2 + 4 using synthetic division, I presume
|dw:1443824947058:dw| (it's been so long since I've done this lol)
|dw:1443825019233:dw|
|dw:1443825082485:dw|
that leaves us with x^2 - 25 and the roots of that polynomial are 5 and -5
anyway, that means our missing roots are 5 and -5, would you like me to go over anything with you?
hopefully I didnt make a mistake somewhere
@Vocaloid sorry I lost connection.
For the given function, find the vertical and horizontal asymptote(s) (if there are any). f(x) = the quantity x squared plus three divided by the quantity x squared minus nine x = 3, x = -3, y = 1 x = 9, y = 3 None x = 9, y = 1
options^
|dw:1443825614299:dw|
hint: to find the vertical asymptote, set the denominator equal to 0

Not the answer you are looking for?

Search for more explanations.

Ask your own question