A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 one year ago
Will METAL!!
For the given function, find the vertical and horizontal asymptote(s) (if there are any).
f(x) = the quantity x squared plus three divided by the quantity x squared minus nine
A) x = 3, x = 3, y = 1
B) x = 9, y = 3
C) None
D) x = 9, y = 1
anonymous
 one year ago
Will METAL!! For the given function, find the vertical and horizontal asymptote(s) (if there are any). f(x) = the quantity x squared plus three divided by the quantity x squared minus nine A) x = 3, x = 3, y = 1 B) x = 9, y = 3 C) None D) x = 9, y = 1

This Question is Closed

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0dw:1443864761554:dw

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0will metal @satellite73

Koikkara
 one year ago
Best ResponseYou've already chosen the best response.1@clairvoyant1 try here: http://openstudy.com/updates/534cc750e4b0c4f40b57a728

Koikkara
 one year ago
Best ResponseYou've already chosen the best response.1\(\color{blue}{\huge\tt{Nice~}}\) \(\huge\mathcal{to~meet~}\) \(\color{red}{\huge\tt{You~!}}\)

mathmate
 one year ago
Best ResponseYou've already chosen the best response.0Horizontal asymptote is y=k, if the leading coefficient of the numerator divided by the leading coefficient of the denominator is a constant k. Example: y=(2x3)/(x2), k=2x/x=2, so horizontal asymptote is at y=2. In this case, x^2/x=x, so the asymptote is a slanting one, y=x.

Nnesha
 one year ago
Best ResponseYou've already chosen the best response.2there is a mistake in ur question i think it's x^2 9 dw:1443875623116:dw

Nnesha
 one year ago
Best ResponseYou've already chosen the best response.2bec ~if the highest degree of the numerator is greater than the denominator then `No horizontal asy.` \[\color{reD}{\rm N}>\color{blue}{\rm D}\] example \[\large\rm \frac{ 7x^\color{ReD}{3} +1}{ 4x^\color{blue}{2}+3 }\] use the example provided by math to find horizontal asy.

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0Confirm that f and g are inverses by showing that f(g(x)) = x and g(f(x)) = x. f(x) = quantity x minus seven divided by quantity x plus two. and g(x) = quantity negative two x minus seven divided by quantity x minus one.

mathmate
 one year ago
Best ResponseYou've already chosen the best response.0Example: f(x)=log(x) g(x)=e^x f(g(x))=log(e^x))=x, so g is the inverse of f (and vice versa) Another example f(x)=2x+3 g(x)=(x3)/2 f(g(x))=2((x3)/2)+3=x3+3=x g(f(x))=((2x+3)3)/2=2x/2=x so g is the inverse of f (and vice versa)

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0ok now can you draw out the problem you wrote down on here.

ribhu
 one year ago
Best ResponseYou've already chosen the best response.0you can take the solution from the pic..

mathmate
 one year ago
Best ResponseYou've already chosen the best response.0Do you mean this? "f(x) = quantity x minus seven divided by quantity x plus two. and g(x) = quantity negative two x minus seven divided by quantity x minus one." f(x)=(x7)/(x+2) g(x)=(2x7)/(x1) Except that the question should have read: "f(x) = quantity x minus seven \(\color{red}{all}\) divided by quantity x plus two. and g(x) = quantity negative two x minus seven \(\color{red}{all}\) divided by quantity x minus one." It shows that the person who made up the problem does not work daily with algebra.
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.