Find the radius of convergence of 1)\(\sum_{n=1}^\infty \dfrac{(-3i)^n}{n^3}z^n\) 2) \(\sum_{n=0}^{\infty}(\dfrac{2in+1}{3n-2i})^n z^n\) Please, help

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the radius of convergence of 1)\(\sum_{n=1}^\infty \dfrac{(-3i)^n}{n^3}z^n\) 2) \(\sum_{n=0}^{\infty}(\dfrac{2in+1}{3n-2i})^n z^n\) Please, help

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

@SithsAndGiggles @oldrin.bataku I know you guys are not online, I tag and if you guys online, please give me a hand. Thanks in advance.
1st we find the L \[L=\lim_{n \rightarrow \infty}\left|\frac{ a_{n+1} }{ a_{n} }\right|\] when a_{n} is nth term so to get a_{n+1} we just put n+1 in the equation on simplification we get-\[L=\lim_{n \rightarrow \infty}\left| \frac{ (-3i)(z)(n)^2 }{ (n+1)^2 } \right|\]\[L=\left| (-3i)(z) \right|\lim_{n \rightarrow \infty}\left( \frac{ n^2 }{ (n+1)^2 } \right)\]\[L=\left| -3iz \right|\]L<1 LHS should be of the form |x-a| and the RHS will be our radius of convergence \[|-3zi|<1\]dividing be |-3i|\[|z \pm 0|<\frac{ 1 }{ \left| -3i \right| }\] so radius of convergence is \[\frac{ 1 }{ |-3i|}\]well m not so sure cause i don't knw about such complex case ..i gotta hurry i have a class so i'll see this when i come back :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Thanks a lot. Have a good time.
1) \[\frac{ 1 }{ R } = \lim \left| \frac{a_{n+1}}{a_{n}} \right|\] \[\frac{ 1 }{ R } =\lim\left| \frac{ (-3i)^{n+1} }{ (n+1)^{3}} \cdot \frac{ n^{3} }{ (-3i)^{n} }\right|\] \[\frac{ 1 }{ R } =3\cdot \lim \left| (\frac{ n }{ n+1 })^{3} \right| \implies R = \frac{ 1 }{ 3 }\] That one is pretty straightforward. I'll see what I can do with the 2nd one.
np :) ws it correct? or we do something else with complex cases?

Not the answer you are looking for?

Search for more explanations.

Ask your own question