Loser66
  • Loser66
Find the radius of convergence of 1)\(\sum_{n=1}^\infty \dfrac{(-3i)^n}{n^3}z^n\) 2) \(\sum_{n=0}^{\infty}(\dfrac{2in+1}{3n-2i})^n z^n\) Please, help
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Loser66
  • Loser66
@imqwerty
Loser66
  • Loser66
@SithsAndGiggles @oldrin.bataku I know you guys are not online, I tag and if you guys online, please give me a hand. Thanks in advance.
imqwerty
  • imqwerty
1st we find the L \[L=\lim_{n \rightarrow \infty}\left|\frac{ a_{n+1} }{ a_{n} }\right|\] when a_{n} is nth term so to get a_{n+1} we just put n+1 in the equation on simplification we get-\[L=\lim_{n \rightarrow \infty}\left| \frac{ (-3i)(z)(n)^2 }{ (n+1)^2 } \right|\]\[L=\left| (-3i)(z) \right|\lim_{n \rightarrow \infty}\left( \frac{ n^2 }{ (n+1)^2 } \right)\]\[L=\left| -3iz \right|\]L<1 LHS should be of the form |x-a| and the RHS will be our radius of convergence \[|-3zi|<1\]dividing be |-3i|\[|z \pm 0|<\frac{ 1 }{ \left| -3i \right| }\] so radius of convergence is \[\frac{ 1 }{ |-3i|}\]well m not so sure cause i don't knw about such complex case ..i gotta hurry i have a class so i'll see this when i come back :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Loser66
  • Loser66
Thanks a lot. Have a good time.
anonymous
  • anonymous
1) \[\frac{ 1 }{ R } = \lim \left| \frac{a_{n+1}}{a_{n}} \right|\] \[\frac{ 1 }{ R } =\lim\left| \frac{ (-3i)^{n+1} }{ (n+1)^{3}} \cdot \frac{ n^{3} }{ (-3i)^{n} }\right|\] \[\frac{ 1 }{ R } =3\cdot \lim \left| (\frac{ n }{ n+1 })^{3} \right| \implies R = \frac{ 1 }{ 3 }\] That one is pretty straightforward. I'll see what I can do with the 2nd one.
imqwerty
  • imqwerty
np :) ws it correct? or we do something else with complex cases?

Looking for something else?

Not the answer you are looking for? Search for more explanations.