vera_ewing
  • vera_ewing
math question
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
vera_ewing
  • vera_ewing
@Michele_Laino Is this one A?
Michele_Laino
  • Michele_Laino
I'm sorry, here we have to apply the Kuhn-Tucker theorem, and I'm not good with that theorem
Michele_Laino
  • Michele_Laino
@dan815 please help

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
As a start sketch the given inequalities : \(x\ge 1\) |dw:1443889526891:dw|
ganeshie8
  • ganeshie8
\(y\ge 0\) |dw:1443889681232:dw|
vera_ewing
  • vera_ewing
Ok so is the minimum 1?
ganeshie8
  • ganeshie8
\(x\le 4-y\) : |dw:1443889782148:dw|
ganeshie8
  • ganeshie8
As you can see, the intersection of all the given inequalities is : |dw:1443890083460:dw|
ganeshie8
  • ganeshie8
The max and min values of given function, \(f= 2y+x\) occur at the "vertices" of that intersection region. Look at that intersection region, could you find the vertices of that intersection region ?
vera_ewing
  • vera_ewing
No, how would I do that?
ganeshie8
  • ganeshie8
Easy, do you see intersection region in above diagram ?
vera_ewing
  • vera_ewing
Yes
ganeshie8
  • ganeshie8
|dw:1443890318233:dw|