rock_mit182
  • rock_mit182
a) Show that the eigenvalues of the 2 X 2 matrix A = [a,b];[c,d] are the solutions of the quadratic equation A^2 - tr(A)lambda + det A = 0, where tr(A) is the trace of A.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
rock_mit182
  • rock_mit182
@amistre64
amistre64
  • amistre64
i thought AA was just another matrix ... the trace and det are scalars if memory serves also, refresh my memory on the definition of the trace
amistre64
  • amistre64
sum of the main diag ...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
but then A^2 has me befuddled
Michele_Laino
  • Michele_Laino
hint: we can write the subsequent quadratic equation: \[\det \left( {\begin{array}{*{20}{c}} {a - \lambda }&b \\ c&{d - \lambda } \end{array}} \right) = {\lambda ^2} - \left( {a + d} \right)\lambda + ad - bc\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.