anonymous
  • anonymous
Find the area of a sector with an arc length of 60in. And a radius of 15in
Geometry
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

kawii2004
  • kawii2004
add 60 and 15 if you dont see the awnser multiply of subtract
anonymous
  • anonymous
Sorry what do you mean? The answers are: A. 117.75 inches squared B. 282.60 inches squared C. 450 inches squared D. 6,750 inches squared
kawii2004
  • kawii2004
add

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

triciaal
  • triciaal
|dw:1443905817129:dw|
triciaal
  • triciaal
|dw:1443905951262:dw|
triciaal
  • triciaal
|dw:1443906055728:dw|
anonymous
  • anonymous
Lol I'm so confused
triciaal
  • triciaal
the area of the sector is the same ratio as the length of the arc to the circumference.
mathmate
  • mathmate
Let's not confuse arc-length with angles. 60" is the arc-length, and 15 is the radius. If you have learned radians, you will find the angle subtended is \(\theta\) = arc-length / radius = 60/15=4 radians. Area of a sector = \((1/2)\theta r^2= (1/2)*4~ radians *15^2~ in.^2\) \(=450~ in.^2\) If you have not learned radians, use @triciaal 's formula: area of sector / area of circle = arc length of sector / circumference of circle So area of sector = area of circle * arc length of sector / circumference of circle = \(\pi r^2 * (60/(2\pi (r)) in^2\) = \(2r^2\) = \(450~in^2\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.