anonymous
  • anonymous
A teacher designs a test so a student who studies will pass 85% of the time, but a student who does not study will pass 11% of the time. A certain student studies for 86% of the tests taken. On a given test, what is the probability that student passes? FINITE MATH
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
what is our sample space of events?
amistre64
  • amistre64
study, and pass or not study, and pass
amistre64
  • amistre64
how do we calculate the probability of each event in the sample space?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

kropot72
  • kropot72
This can be solved by the use of a probability tree: |dw:1443932148840:dw| \[\large P(S \cap P)=0.86\times0.85\] \[\large P(NS \cap P)=0.14\times0.11\] The required probability is therefore given by: \[\large P(S\cap P)+P(NS \cap P)=you\ can\ calculate\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.