Limits of absolute values

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Limits of absolute values

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1 Attachment
Ok lets first note, |dw:1443917561077:dw| if we plug the limit we will get 0/0 correct?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Right
All we really need to know is |dw:1443917619092:dw| so we have to break it up as such
Now we have to take the limit as it approaches -5 from the left and right, so we have \[\huge \lim_{x \rightarrow -5^{-}} \frac{ 5-(-x) }{ 5+x } = ...\] and \[\huge \lim_{x \rightarrow -5^+} \frac{ 5-x }{ 5+x } = ...\]does that make sense?
Okay, but direct substitution still doesn't work there o.o
They equal, 1 and - 1 respectively?
coming from either direction of -5 we have \[\lim_{x \rightarrow -5} \frac{ 5-|x| }{ 5+x } =\lim_{x \rightarrow -5} \frac{ 5-(-x) }{ 5+x } \]
Yes, thanks @Zarkon
So.. = 1
Yes
Yay!! ok, perfect. Thanks both of you :)
Had to note x<0 for both :p
Slight mistake
Yeah, sorry o.0

Not the answer you are looking for?

Search for more explanations.

Ask your own question