Simplify 1 / (1+a^n) + 1/(1+a^-n)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Simplify 1 / (1+a^n) + 1/(1+a^-n)

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

hint: multiply that second fraction by a^n/a^n
Thanks but does it cancel out th denominater for the second fraction
\[1 \cdot a_n=? \\ (1+a^{-n}) \cdot a_n=1 \cdot a_n +a^{-n} \cdot a^{n} =?\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Wouldn't it be 1+a as the denimontar
those one n's were suppose to be exponents (not subscipts)
\[1 \cdot a^n=a^n \\ (1+a^{-n}) \cdot a^n=1 \cdot a^n+a^{-n} a^{n} \text{ by distributive law } \\ \text{ now do you know law of exponents? }\]
if you have the same base and you are multiplying what do you do with the exponents ?
Add
\[(1+a^{-n})a^n=a^n+a^{-n+n}=?\]
-n+n=?
0
right and a^0=?
One
\[\frac{1}{1+a^{n}}+\frac{a^n}{1+a^{n}}=?\]
you see you have the same denominator
now you can write as one fraction
\[\frac{1+a^{n}}{1+a^{n}}=?\]
1
right and this is of coursing assuming a>0
a could be less than 0 depending on n we could say a lot about the domain restrictions lol
but I'm sure they are just looking for 1
Ok tysm
np

Not the answer you are looking for?

Search for more explanations.

Ask your own question