anonymous
  • anonymous
URGENT!!! RLC Circuit voltage help
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
IrishBoy123
  • IrishBoy123
from \(Q = CV\) for the capacitor, we have \(I = C \dot V\) so \(V(t) = \dfrac{1}{C}\int\limits_{0}^{t} I(t) \; dt \) \( = \dfrac{1}{C}\int\limits_{0}^{t} e^{-5t} \; dt \)
anonymous
  • anonymous
In your screen capture above, applying Kirchoff's Voltage Law (KVL) around the loop gives \[- v(t)+v _{L}(t) + v _{c}(t) = 0\] where \[v _{L}(t)\] is the voltage across the inductor. Solving gives us: \[v(t) = v _{L}(t)+v _{C}(t)\] Vc(t) is given by the previous responder. \[v _{L}(t) = L \frac{ di _{L} }{ dt }\] where iL is the current through the inductor, but \[i_{L}(t) = i _{R}(t)+i _{C}(t)= \frac{ v _{C}(t) }{ R }+i _{C}(t)\] Since you know \[v _{C}(t), i _{C}(t)\] You can now solve for \[v(t)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.