Zale101
  • Zale101
"Frenet-serre reference frame"
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Zale101
  • Zale101
Find T(t), N(t), B(t) at the given point. \(r(t)=(t^2-1)i+tj;~ t=1\) \(r'(t)=2t+1j\) \(||r'(t))||=\sqrt{(2t)^2+1}=\sqrt{4t^2+1}\) \(T(t)=\LARGE \frac{r'(t)}{||r'(t)||}\) \(T(t)=\LARGE \frac{2ti+j}{\sqrt{4t^2+1}}\) \(T(1)=\LARGE \frac{2}{\sqrt{5}}i+\frac{1}{\sqrt{5}}j\) I am having trouble finding N(t).
Zale101
  • Zale101
\(N(t)=\large\frac{T'(t)}{||T'(t)||}\)
Zale101
  • Zale101
I tried solving for N(t) but when i took the derivative of T(t), it seemed complex in the N(t) equation. Is that okay?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Zale101
  • Zale101
@ganeshie8 @dan815
ganeshie8
  • ganeshie8
I think so, there is no easy way... you will have to work the messy derivatives...
Zale101
  • Zale101
Alright thanks.
hwyl
  • hwyl
GOOD LUCK LOL
Zale101
  • Zale101
Thanks xD
ganeshie8
  • ganeshie8
@Empty
Zale101
  • Zale101
\(T'(t)=\large \frac{2}{(4t^2+1)^{3/2}}-\frac{4t}{4t^2+1)^{3/2}}\) \(||T'(t)||=\sqrt{\frac{4}{(4t^2+1)^3}-\frac{1}{4t^2+1}^{3/2}}}\)
Zale101
  • Zale101
|dw:1443977000437:dw|
Zale101
  • Zale101
|dw:1443979370730:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.