Find the solution for this differential equation: ((y^3)cosx - y)dx +(x+y^2)dy = 0 Helpppp

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the solution for this differential equation: ((y^3)cosx - y)dx +(x+y^2)dy = 0 Helpppp

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

if its a special kind of equation, we can up one side, and then down it to the other to fill in some missing parts
if M(x,y) dx + N(x,y) dy and My = Nx, then we have a condition is suitable
they are not equal. the M=(3y^2)cosx - 1 and N=1

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

what methods are available to you to work the problem with?
this question needs to be solved using the integrating factor by following the instructions in the worksheet. but I think I can use homogeneous coefficient if I still can't answer it
This will probably help you understand integrating factor a little better, check it out then let us know if it makes any more sense http://mathworld.wolfram.com/IntegratingFactor.html
|dw:1444023674912:dw|
that sub doesnt work
hmmm can u think of and substitutions to make it separable
we have to be able to get it in that dy/dx + p(x) y=g(x) form if u want to use integrating factor
http://www.wolframalpha.com/input/?i=%28%28y^3%29cosx+-+y%29dx+%2B%28x%2By^2%29dy+%3D+0
wolfram has confirm non lin equation, nothing we can do then
wolfram has all the built in bernoullis tricks so
it can't be solve?
hmm... did you copy the eq correctly?
this yea? \[((y^3)cosx - y)dx +(x+y^2)dy = 0\]
Yess

Not the answer you are looking for?

Search for more explanations.

Ask your own question