anonymous
  • anonymous
Suppose angle A=pi/3 radians and length of c=10
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
hartnn
  • hartnn
you have b and c, use pythagoras to find a !
anonymous
  • anonymous
the interior angles are b=30, and a=60

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hartnn
  • hartnn
right, so you can also use the fact that, side opposite to 60 degree angle is \(\sqrt 3 /2\) times the hypotenuse
anonymous
  • anonymous
For the length of a I tried setting up sin60=a/10
hartnn
  • hartnn
ok, good going, so a = 10 sin 60 and sin 60 is actually \(\sqrt 3 /2\)
anonymous
  • anonymous
so i'm a little confused what i'm supposed to do with the Sqrt(3)/2
hartnn
  • hartnn
multiply it with 10 \(10 \dfrac{\sqrt 3}{2} = 5 \sqrt 3 \)
anonymous
  • anonymous
oh I see, so instead of using the 60 degrees we are just multiplying sqrt(3)/2 by 10
hartnn
  • hartnn
yeah
anonymous
  • anonymous
makes sense! Thank you lots :D
hartnn
  • hartnn
welcome a lots ^_^

Looking for something else?

Not the answer you are looking for? Search for more explanations.