Help please !!! Solve the following with a calculator. 2log (100^-3)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Help please !!! Solve the following with a calculator. 2log (100^-3)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1444009782868:dw|
-12
how you get that

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Just put it into your calculator or google :)
lol z.. i wanna know know how solve it by hand.
apply the power rule
power rule \[\large\rm log_b x^y = y \log_b x\]
\[\huge\rm 2 \log (100^{-3})\] number at front of log becomes exponent of (100^{-3})\[\large\rm log (100^{-3})^2\] now multiply the exponents \[\rm (X^m)^n=x^{m \times n}\] and then negative exponent rule \[\large\rm x^{-m}=\frac{ 1 }{ x^m }\] then there are two ways to find final answer 1st) use change of base formula and then calculator or 2nd) set it equal to x to solve by hand
make sense ? take ur time to read that :=)
one second let me attach the picture
1 Attachment
\(\huge\color{green}{\checkmark}\)
gimme a sec i'll check it again
looks right
aiight got it :) do you know any website that has log formulas
quotient rule\[\large\rm log_b x - \log_b y = \log_b \frac{ x }{ y}\] to condense you can change subtraction to division product rule \[\large\rm log_b x + \log_b y = \log_b( x \times y )\] addition ----> multiplication power rule \[\large\rm log_b x^y = y \log_b x\]
heheh change of base formula \[\huge\rm \log_b a = \frac{ \log a }{ \log b }\]
http://www.rapidtables.com/math/algebra/Logarithm.htm
\[\begin{align} 2\log(100^{-3}) &=2\log\left(\frac{1}{100^3}\right) \\& = 2[\log(1) -\log(100^3)] \\ &=2[0-\log(10^6)] \\&= 2[-6\log(10)] \\&= 2(-6(1))\\&= -12 \end{align} \]
That's another approach you could have used as well :P
ah i see it :) Thank you ladies :)
@Nnesha what do you think?
nice!
or after this if you don't want to use change of base formula set it equal to x \[\huge\rm log (100^{-6}) =x\] now change log to an exponential form log= log base 10 \[10^x =100^{-6}\] rewrite 100^{-16} in terms of base 10 \[10^x =10^{2 \times -6}\] bases are same you can cancel \[\cancel{10}^x =\cancel{10}^{2 \times -6}\] left with x= 2 times -6 = -12 :=)
|dw:1444012127376:dw| that's all you need to know for logs or u can visit that website :=)
\[\large \log_{10}(100^{-6}) = x\]\[10^{\large \log_{10}(100^{-6})} = 10^x\]\[\large 100^{-6} = 10^{x} \qquad \qquad \qquad 10^{-12} \equiv 100^{-6} \]\[\large 10^{-12} = 10^{x}\]\[\therefore -12 = x\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question