anonymous
  • anonymous
Find the standard matrix of a linear transformation that maps a point (x,y,z) in 3 dimensional coordinate space XYZ to its projected point in XY coordinate plane followed by reflection across coordinate axis y.
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

ganeshie8
  • ganeshie8
\[(x,y,z) \longrightarrow (x, y, 0) \longrightarrow (-x, y, 0) \]
anonymous
  • anonymous
Wow was it really that easy? so the matrix would be: [-x] [ y] [0] right?
ganeshie8
  • ganeshie8
Nope, it should be a 3x3 matrix which maps (x, y, z) to (-x, y, 0)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Okay can you help me set up how to do that?
ganeshie8
  • ganeshie8
try \[\begin{bmatrix} -1&0&0\\0&1&0\\0&0&0\end{bmatrix}\]
anonymous
  • anonymous
Okay thanks. I was way over thinking this problem!
ganeshie8
  • ganeshie8
np

Looking for something else?

Not the answer you are looking for? Search for more explanations.