JMark
  • JMark
When 58123 and 59059 is divided by a three digit number N the remainder comes same. Find the least value of N.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Directrix
  • Directrix
Work is that of @Ravi_Handa http://tinyurl.com/o5dohrr We are given that 58123 and 59059 leave the same remainder (let's say 'r') when divided by N. So, 58123 = kN + r 59059 = k'N + r => 59059 - 58123 = (k' - k)N => (k' - k)N = 936 So, N is a 3-digit factor of 936 936 = 2^3 * 3^2 * 13 Three digit factors are: 936, 936/2, 936/3, 936/4, 936/6, 936/8, and 936/9 There are 7 numbers which satisfy the given property. ----------------- Find the values of these and select the smallest one for your answer: 936, 936/2, 936/3, 936/4, 936/6, 936/8, and 936/9 @JMark

Looking for something else?

Not the answer you are looking for? Search for more explanations.