two numbers are randomly chosen from 1, 3, 5, 7, ..., 145, 147, 149

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

two numbers are randomly chosen from 1, 3, 5, 7, ..., 145, 147, 149

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

in how many ways can they be chosen so that we have their product divisible by 5?
Total numbers: 75. Numbers divisible by 5: 15. Case-I: One number and only one number of the two chosen ones is divisible by 5. \(15\) numbers divisible by 5 and \(60 \) numbers that are not. Thus there are \(15\cdot 60= 900\) such pairs. Case-II: Both numbers divisible by 5.\[\binom{15}{2}=105\]Total numbers: 1005.
The given answer is 1020. Am I missing something?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\(\color{white}{bookmark}\)
oooh, goddammit. you know what, the original question has a list that goes up to 151 :P
in that case, divisible by 5: 15... total: 76
so I'm right in a way. I just read the list till 149 lol

Not the answer you are looking for?

Search for more explanations.

Ask your own question