A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

anonymous

  • one year ago

check my ques,(warning math ahead)

  • This Question is Closed
  1. studio-games
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Question?

  2. studio-games
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    ...

  3. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Use divergence theorem to evaluate \[\iint_\limits S \vec A.d \vec S \space \space \space ; \space \space \space \vec A=x^3\hat i+y^3 \hat j+z^3 \hat k\] S is the surface of the sphere \[x^2+y^2+z^2=a^2\] From divergence theorem we have, \[\iint_\limits S \vec A .d \vec S=\iiint_\limits V (\vec \nabla . \vec A)dV=\iiint_\limits V (3x^2+3y^2+3z^2)dV\]\[3 \int\limits_{-a}^{a}[\int\limits_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}[\int\limits_{-\sqrt{a^2-(x^2+y^2)}}^{\sqrt{a^2-(x^2+y^2)}}(x^2+y^2+z^2)dz]dy]dx\] \[3 \int\limits_{-a}^{a}[\int\limits_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}[2(x^2+y^2)\int\limits_{0}^{\sqrt{a^2-(x^2+y^2)}}dz+2\int\limits_{0}^{\sqrt{a^2-(x^2+y^2)}}z^2dz]dy]dx\]\[6\int\limits_{-a}^{a}[\int\limits_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}[(x^2+y^2)\sqrt{a^2-(x^2+y^2)}+\frac{(a^2-(x^2+y^2))^\frac{3}{2}}{3}]dy]dx\] \[6\int\limits_{-a}^{a}[2x^2\int\limits_{0}^{\sqrt{a^2-x^2}}\sqrt{a^2-(x^2+y^2)}dy+2\int\limits_{0}^{\sqrt{a^2-x^2}}y^2\sqrt{a^2-(x^2+y^2)}...\]\[...+\frac{2}{3}\int\limits_{0}^{\sqrt{a^2-x^2}}(a^2-(x^2+y^2))^\frac{3}{2}dy]dx\] Let \[a^2-x^2=t^2\] \[12\int\limits_{-a}^{a}[x^2\int\limits_{0}^{t}\sqrt{t^2-y^2}dy+\int\limits_{0}^{t}y^2\sqrt{t^2-y^2}dy+\frac{1}{3}\int\limits_{0}^{t}(t^2-y^2)^\frac{3}{2}dy]dx\] Using the substitution \[y=t\sin(\theta)\] whereever neccessary \[12\int\limits_{-a}^{a}[x^2[\frac{y}{2}\sqrt{t^2-y^2}+\frac{t^2}{2}\sin^{-1}\frac{y}{t}]_{0}^{t}+\int\limits_{0}^{\frac{\pi}{2}}t^2\sin^2(\theta).t^2\cos^2(\theta)d \theta+...\] \[...+\frac{1}{3}\int\limits_{0}^{\frac{\pi}{2}}t^3\cos^3(\theta).t\cos(\theta)d \theta]dx\] \[12 \int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{t^4}{4}\int\limits_{0}^{\frac{\pi}{2}}\sin^2(2\theta)d \theta+\frac{t^4}{3}\int\limits_{0}^{\frac{\pi}{2}}\cos^4(\theta)d \theta]dx\]\[12\int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{t^4}{8}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta+\frac{t^4}{3}\int\limits_{0}^{\frac{\pi}{2}}(\cos^2(\theta)(1-\sin^2(\theta)))d \theta]dx\]\[12\int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{t^4}{8}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta+\frac{t^4}{3}\int\limits_{0}^{\frac{\pi}{2}}(\cos^2(\theta)-\cos^2(\theta)\sin^2(\theta)) d \theta]dx\]\[12 \int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{t^4}{8}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta+\frac{t^4}{6}\int\limits_{0}^{\frac{\pi}{2}}(1+\cos(2\theta)-\frac{1}{2}\sin^2(2 \theta))d \theta]dx\] \[12\int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{t^4}{8}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta+\frac{t^4}{6}[\int\limits_{0}^{\frac{\pi}{2}}(1+\cos(2\theta))d \theta-\frac{1}{4}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta]]dx\]\[12\int\limits_{-a}^{a}[\frac{\pi x^2t^4}{4}+\frac{t^4}{6}\int\limits_{0}^{\frac{\pi}{2}}(1+\cos(2\theta))d \theta+\frac{t^4}{8}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta-\frac{t^4}{24}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta]dx\]\[12\int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{\pi t^4}{12}+\frac{t^4}{8}\int\limits_{0}^{\frac{\pi}{2}}((1-\cos(4\theta))d \theta)(1-\frac{1}{3})]dx\]\[12\int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{\pi t^4}{12}+\frac{t^4}{8}.\frac{2}{3}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta]dx\]\[12\int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{\pi t^4}{12}+\frac{\pi t^4}{24}]dx=3\pi \int\limits_{-a}^{a}(x^2t^2+\frac{t^4}{3}+\frac{t^4}{6})dx\]\[3\pi \int\limits_{-a}^{a}[x^2(a^2-x^2)+\frac{(a^2-x^2)^2}{2}]dx=6\pi [\int\limits_{0}^{a}(a^2x^2-x^4)dx+\frac{1}{2}\int\limits_{0}^{a}(a^4-2a^2x^2+x^4)dx]\]\[6\pi[\frac{a^5}{3}-\frac{a^5}{5}+\frac{1}{2}(a^5-\frac{2}{3}a^5+\frac{a^5}{5})]\]\[6\pi[\frac{a^5}{3}-\frac{a^5}{5}+\frac{a^5}{2}-\frac{a^5}{3}+\frac{a^5}{10}]=6\pi[\frac{-2a^5+5a^5+a^5}{10}]=6\pi[\frac{4a^5}{10}]=\frac{24\pi a^5}{10}=\frac{12\pi a^5}{5}\]

  4. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    oh no its cut by the page

  5. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    im getting \[\frac{12\pi a^5}{5}\] after a looong way

  6. ganeshie8
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 4

    why haven't you switched to spherical coordinates ?

  7. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    I haven't studied them yet :P

  8. studio-games
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Im not doing this. **** this.

  9. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    How fast is this with spherical?

  10. ganeshie8
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 4

    cartesian to spherical : \(dx~dy~dz = \rho^2\sin\phi~ d\rho~ d\theta ~d\phi\)

  11. ganeshie8
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 4

    \[\iiint_\limits V (3x^2+3y^2+3z^2)dV \\~\\ =\int\limits_{0}^{\pi}~\int\limits_{0}^{2\pi}~\int\limits_0^a (3\rho^2)~ \rho^2\sin\phi~ d\rho~ d\theta ~d\phi \\~\\ \] one or two more steps and you're done !

  12. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[3 \iiint_\limits{V}\rho^2(\rho^2\sin(\theta)d \rho d \theta d \phi)=3\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int\limits_{-a}^{a}\rho^4 \sin(\theta) d \rho d \theta d \phi\]\[24\int\limits_{0}^{\frac{\pi}{2}}\int\limits_{0}^{\frac{\pi}{2}}\int\limits_{0}^{a}\rho^4 \sin(\theta) d \rho d \theta d \phi=\frac{24a^5}{5}\int\limits_{0}^{\frac{\pi}{2}}\int\limits_{0}^{\frac{\pi}{2}}\sin(\theta) d \theta d \phi\]\[\frac{24a^5}{5}\int\limits_{0}^{\frac{\pi}{2}}[-\cos(\theta)]_{0}^{\frac{\pi}{2}}d \phi=\frac{24a^5}{5}\int\limits_{0}^{\frac{\pi}{2}}1.d \phi=\frac{24a^5}{5}.\frac{\pi}{2}=\frac{12\pi a^5}{5}\]

  13. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    is this good

  14. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    that problems long without converting coordinates

  15. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    sweet

  16. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.