anonymous
  • anonymous
check my ques,(warning math ahead)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
studio-games
  • studio-games
Question?
studio-games
  • studio-games
...
anonymous
  • anonymous
Use divergence theorem to evaluate \[\iint_\limits S \vec A.d \vec S \space \space \space ; \space \space \space \vec A=x^3\hat i+y^3 \hat j+z^3 \hat k\] S is the surface of the sphere \[x^2+y^2+z^2=a^2\] From divergence theorem we have, \[\iint_\limits S \vec A .d \vec S=\iiint_\limits V (\vec \nabla . \vec A)dV=\iiint_\limits V (3x^2+3y^2+3z^2)dV\]\[3 \int\limits_{-a}^{a}[\int\limits_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}[\int\limits_{-\sqrt{a^2-(x^2+y^2)}}^{\sqrt{a^2-(x^2+y^2)}}(x^2+y^2+z^2)dz]dy]dx\] \[3 \int\limits_{-a}^{a}[\int\limits_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}[2(x^2+y^2)\int\limits_{0}^{\sqrt{a^2-(x^2+y^2)}}dz+2\int\limits_{0}^{\sqrt{a^2-(x^2+y^2)}}z^2dz]dy]dx\]\[6\int\limits_{-a}^{a}[\int\limits_{-\sqrt{a^2-x^2}}^{\sqrt{a^2-x^2}}[(x^2+y^2)\sqrt{a^2-(x^2+y^2)}+\frac{(a^2-(x^2+y^2))^\frac{3}{2}}{3}]dy]dx\] \[6\int\limits_{-a}^{a}[2x^2\int\limits_{0}^{\sqrt{a^2-x^2}}\sqrt{a^2-(x^2+y^2)}dy+2\int\limits_{0}^{\sqrt{a^2-x^2}}y^2\sqrt{a^2-(x^2+y^2)}...\]\[...+\frac{2}{3}\int\limits_{0}^{\sqrt{a^2-x^2}}(a^2-(x^2+y^2))^\frac{3}{2}dy]dx\] Let \[a^2-x^2=t^2\] \[12\int\limits_{-a}^{a}[x^2\int\limits_{0}^{t}\sqrt{t^2-y^2}dy+\int\limits_{0}^{t}y^2\sqrt{t^2-y^2}dy+\frac{1}{3}\int\limits_{0}^{t}(t^2-y^2)^\frac{3}{2}dy]dx\] Using the substitution \[y=t\sin(\theta)\] whereever neccessary \[12\int\limits_{-a}^{a}[x^2[\frac{y}{2}\sqrt{t^2-y^2}+\frac{t^2}{2}\sin^{-1}\frac{y}{t}]_{0}^{t}+\int\limits_{0}^{\frac{\pi}{2}}t^2\sin^2(\theta).t^2\cos^2(\theta)d \theta+...\] \[...+\frac{1}{3}\int\limits_{0}^{\frac{\pi}{2}}t^3\cos^3(\theta).t\cos(\theta)d \theta]dx\] \[12 \int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{t^4}{4}\int\limits_{0}^{\frac{\pi}{2}}\sin^2(2\theta)d \theta+\frac{t^4}{3}\int\limits_{0}^{\frac{\pi}{2}}\cos^4(\theta)d \theta]dx\]\[12\int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{t^4}{8}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta+\frac{t^4}{3}\int\limits_{0}^{\frac{\pi}{2}}(\cos^2(\theta)(1-\sin^2(\theta)))d \theta]dx\]\[12\int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{t^4}{8}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta+\frac{t^4}{3}\int\limits_{0}^{\frac{\pi}{2}}(\cos^2(\theta)-\cos^2(\theta)\sin^2(\theta)) d \theta]dx\]\[12 \int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{t^4}{8}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta+\frac{t^4}{6}\int\limits_{0}^{\frac{\pi}{2}}(1+\cos(2\theta)-\frac{1}{2}\sin^2(2 \theta))d \theta]dx\] \[12\int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{t^4}{8}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta+\frac{t^4}{6}[\int\limits_{0}^{\frac{\pi}{2}}(1+\cos(2\theta))d \theta-\frac{1}{4}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta]]dx\]\[12\int\limits_{-a}^{a}[\frac{\pi x^2t^4}{4}+\frac{t^4}{6}\int\limits_{0}^{\frac{\pi}{2}}(1+\cos(2\theta))d \theta+\frac{t^4}{8}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta-\frac{t^4}{24}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta]dx\]\[12\int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{\pi t^4}{12}+\frac{t^4}{8}\int\limits_{0}^{\frac{\pi}{2}}((1-\cos(4\theta))d \theta)(1-\frac{1}{3})]dx\]\[12\int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{\pi t^4}{12}+\frac{t^4}{8}.\frac{2}{3}\int\limits_{0}^{\frac{\pi}{2}}(1-\cos(4\theta))d \theta]dx\]\[12\int\limits_{-a}^{a}[\frac{\pi x^2t^2}{4}+\frac{\pi t^4}{12}+\frac{\pi t^4}{24}]dx=3\pi \int\limits_{-a}^{a}(x^2t^2+\frac{t^4}{3}+\frac{t^4}{6})dx\]\[3\pi \int\limits_{-a}^{a}[x^2(a^2-x^2)+\frac{(a^2-x^2)^2}{2}]dx=6\pi [\int\limits_{0}^{a}(a^2x^2-x^4)dx+\frac{1}{2}\int\limits_{0}^{a}(a^4-2a^2x^2+x^4)dx]\]\[6\pi[\frac{a^5}{3}-\frac{a^5}{5}+\frac{1}{2}(a^5-\frac{2}{3}a^5+\frac{a^5}{5})]\]\[6\pi[\frac{a^5}{3}-\frac{a^5}{5}+\frac{a^5}{2}-\frac{a^5}{3}+\frac{a^5}{10}]=6\pi[\frac{-2a^5+5a^5+a^5}{10}]=6\pi[\frac{4a^5}{10}]=\frac{24\pi a^5}{10}=\frac{12\pi a^5}{5}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
oh no its cut by the page
anonymous
  • anonymous
im getting \[\frac{12\pi a^5}{5}\] after a looong way
ganeshie8
  • ganeshie8
why haven't you switched to spherical coordinates ?
anonymous
  • anonymous
I haven't studied them yet :P
studio-games
  • studio-games
Im not doing this. **** this.
anonymous
  • anonymous
How fast is this with spherical?
ganeshie8
  • ganeshie8
cartesian to spherical : \(dx~dy~dz = \rho^2\sin\phi~ d\rho~ d\theta ~d\phi\)
ganeshie8
  • ganeshie8
\[\iiint_\limits V (3x^2+3y^2+3z^2)dV \\~\\ =\int\limits_{0}^{\pi}~\int\limits_{0}^{2\pi}~\int\limits_0^a (3\rho^2)~ \rho^2\sin\phi~ d\rho~ d\theta ~d\phi \\~\\ \] one or two more steps and you're done !
anonymous
  • anonymous
\[3 \iiint_\limits{V}\rho^2(\rho^2\sin(\theta)d \rho d \theta d \phi)=3\int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int\limits_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\int\limits_{-a}^{a}\rho^4 \sin(\theta) d \rho d \theta d \phi\]\[24\int\limits_{0}^{\frac{\pi}{2}}\int\limits_{0}^{\frac{\pi}{2}}\int\limits_{0}^{a}\rho^4 \sin(\theta) d \rho d \theta d \phi=\frac{24a^5}{5}\int\limits_{0}^{\frac{\pi}{2}}\int\limits_{0}^{\frac{\pi}{2}}\sin(\theta) d \theta d \phi\]\[\frac{24a^5}{5}\int\limits_{0}^{\frac{\pi}{2}}[-\cos(\theta)]_{0}^{\frac{\pi}{2}}d \phi=\frac{24a^5}{5}\int\limits_{0}^{\frac{\pi}{2}}1.d \phi=\frac{24a^5}{5}.\frac{\pi}{2}=\frac{12\pi a^5}{5}\]
anonymous
  • anonymous
is this good
anonymous
  • anonymous
that problems long without converting coordinates
ganeshie8
  • ganeshie8
you may double check with wolfram widget http://www.wolframalpha.com/widget/widgetPopup.jsp?p=v&id=89c969c21b169fa996f899d9b2a98588&title=Spherical%20Integral%20Calculator&theme=blue&i0=3rho%5E4sin(phi)&i1=drho%20dtheta%20dphi&i2=0&i3=a&i4=0&i5=pi&i6=0&i7=2pi&podSelect=&showAssumptions=1&showWarnings=1
anonymous
  • anonymous
sweet

Looking for something else?

Not the answer you are looking for? Search for more explanations.