Acceleration of a cylindrical/circular/spherical body down an inclined plane!

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Acceleration of a cylindrical/circular/spherical body down an inclined plane!

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Lol is this supposed to be a question?
|dw:1444065890958:dw|
Express the acceleration of the body down in the inclined plane in terms of \(I, R, M, \theta \). This is a very basic and fundamental problem in rotational mechanics, but it is quite important to understand what's happening here.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

*Assume pure rolling motion.
@ganeshie8 OK, here it is.
This will answer your question exactly: https://www.youtube.com/watch?v=64oYran-mZw&list=PLTAnYeruJqLeW0sK3Gzwh2VxAPEhI8RWc&index=14 This is the only way I can think to do this problem so idk if there's some other way to do this.
dude it was meant as a challenge
what how was I supposed to know lol whoops
yes hello @Astrophysics
I've actually done this using Lagrangian
But you'll have to use conservation of energy I guess
no
Haha ok, use torque and Newton's laws then

Not the answer you are looking for?

Search for more explanations.

Ask your own question