Complex 'fractions'

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Complex 'fractions'

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

can't wait to see this!
Since \[\frac{a}{b} = a^1 b^{-1}\] We can see that in the complex plane these exponents are 180 degrees apart. \[1 = e^{i \pi*0}\]\[-1 = e^{i \pi * 1}\] Similarly, does a number with exponents that are 120 degrees apart have meaning? \[\omega = e^{i 2 \pi /3}\] \[a^1 b^\omega c^{\omega^2}\]
My instinct is to say that these could represent a ratio of things like: \[A \cdot H_2O \longrightarrow B \cdot H_2 + C \cdot O_2\] Of course we already have linear algebra for that, although idk if it would quite be the same or not or if this is useful or interesting. Anyways just throwing this out there see if anyone knows or has any ideas.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

A cool property you have is cancellation like in normal fractions. \[\frac{ax}{ay} = \frac{x}{y}\] We can see this from the complex view as: \[(ax)^1(ay)^{-1} = a^{1-1} x^1y^{-1}=x^1y^{-1}\] Which for a "three way fraction" gives us: \[(ax)^1(ay)^\omega(az)^{\omega^2} = a^{1+\omega+\omega^2}x^1y^\omega z^{\omega^2}=x^1y^\omega z^{\omega^2}\] So pretty cool.
Similarly with fractions when you multiply them their tops and bottoms combine, so maybe graphically it will be more interesting to write it: |dw:1444100145825:dw| Also I'll draw out the thing like we had before: |dw:1444100188976:dw|
ok what about adding do we get anything out of this thing worth while. I feel like this is just becoming vector spaces without negative numbers or something, just playing around though bored.

Not the answer you are looking for?

Search for more explanations.

Ask your own question