A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

mathmath333

  • one year ago

The straight line S1,S2,S3 are in parallel and lie in the same plane. A total number of A points on S1, B points on S2 and C points on S3 are used to produce triangles .What is the maximum number of triangles formed ?

  • This Question is Closed
  1. mathmath333
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    The straight line \(S_{1} ,S_{2},S_{3}\) are in parallel and lie in the same plane. A total number of \(A\) points on \(S_{1}\), \(B\) points on \(S_{2}\) and \(C\) points on \(S_{3}\) are used to produce triangles .What is the maximum number of triangles formed ? \(a.)\ \dbinom{A+B+C}{3}-\dbinom{A}{3}-\dbinom{B}{3}-\dbinom{C}{3}+1 \\ b.)\ \dbinom{A+B+C}{3} \\ c.)\ \dbinom{A+B+C}{3}+1 \\ d.)\ \dbinom{A+B+C}{3}-\dbinom{A}{3}-\dbinom{B}{3}-\dbinom{C}{3} \\ \)

  2. ParthKohli
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    It's D... self-explanatory.

  3. mathmath333
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    its D but how is it self explanatory

  4. anonymous
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    d hope this helps

  5. ParthKohli
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 2

    First, the number of triangles you can create from \(n\) non-collinear points is \(\binom{n}3\). But if you have \(k\) points in a straight line among the \(n\), then you remove all the selections of three points from \(k\) points from the total number, so \(\binom{n}{3}-\binom{k}{3}\) triangles.

  6. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.