• tacotime
Linear Algebra: If A is a matrix and x and b are vectors, what is a necessary and sufficient constraint on A to ensure Ax=b has a non-zero solution for x?
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
  • thomas5267
WARNING: I AM REALLY TIRED RIGHT NOW. I AM NOT SURE WHETHER THE FOLLOWING IS CORRECT. It is clearly necessary for \(\underline{b}\) to be non-zero in order for \(\underline{x}\) to be non-zero. If \(\underline{b}=\underline{0}\), then \(\underline{x}=\underline{0}\) will be a solution to this equation. Let \(A\) be a mxn matrix and suppose that \(b\in V\), it seemed to me that \(\operatorname{rank}(A)=\dim(V)=m\) is both necessary and sufficient for \(A\underline{x}=\underline{b}\) to have a non-zero solution given \(\underline{b}\neq\underline{0}\). If \(\operatorname{rank}(A)<\dim(V)\), it will not span the entire \(V\) and some \(\underline{v}\in V\) will not have at least one \(\underline{x}\) corresponding to it. \(\operatorname{rank}(A)>\dim(V)=m\) seems contradictory to me. If \(n>m\), then \(\operatorname{rank}(A)\leq m\). If \(n

Looking for something else?

Not the answer you are looking for? Search for more explanations.