If a ball is dropped near the surface of the earth, then the distance it falls is directly proportional to the square of the time it has fallen. A ball is dropped over the edge of a vertical cliff and falls 39.2 meters in two seconds. Determine the distance (in meters) the ball would have dropped in 3.5 seconds. The ball would have dropped ____ meters. Round your answer to two decimal places

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

If a ball is dropped near the surface of the earth, then the distance it falls is directly proportional to the square of the time it has fallen. A ball is dropped over the edge of a vertical cliff and falls 39.2 meters in two seconds. Determine the distance (in meters) the ball would have dropped in 3.5 seconds. The ball would have dropped ____ meters. Round your answer to two decimal places

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1 Attachment
Is this how you solve this problem 39.2 / 2 = 19.6 * 3.5 = 68.6
\[x \propto t^2 \implies x = k t^2\] \[\therefore k = \dfrac{x_1}{t_1^2} = \dfrac{x_2}{t_2^2}= \dfrac{x_3}{t_3^2} = \ldots\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I am a little confused by that what do I plug into where?
\[\dfrac{39.2}{2^2} = \dfrac{X}{3.5^2}\]
39.2/2^2 = 9.8
yeah
what is X?
? the distance it falls is directly proportional to **the square of** the time it has fallen more time, bigger drop, and its squared too.....
\[\dfrac{39.2}{2^2} = \dfrac{X}{3.5^2}\] \[X = 3.5^2 \cdot \dfrac{39.2}{2^2} \]
\[\checkmark\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question