Applied Calculus 1 question. How would you go about finding the limit of the following function without using a calculator?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Applied Calculus 1 question. How would you go about finding the limit of the following function without using a calculator?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\lim_{x \rightarrow 5} \frac{ \sqrt{x+4}-3 }{ x-5 }\]
Hey Mojo :) You would start by applying an algebraic trick, multiplying the top and bottom by the `conjugate` of the numerator.
\[\large\rm \lim_{x\to5}\frac{\sqrt{x+4}-3}{x-5}\color{royalblue}{\left(\frac{\sqrt{x+4}+3}{\sqrt{x+4}+3}\right)}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yup did that got \[\lim_{x \rightarrow 5}\frac{ x+1 }{ (x-5)(\sqrt{x+4}-3) }\]
sorry mean to have +3 not negative
Hmmm that numerator looks a big messed up :O
oooh i see what id id wrong lol
Recall that when you multiply conjugates, you get the difference of `squares`. You have to square that 3! :)
thanks for pointing that out
yay the got an answer of 1/9
thanks again

Not the answer you are looking for?

Search for more explanations.

Ask your own question