I need help with a question !!!! reply and ill give you the equation

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

I need help with a question !!!! reply and ill give you the equation

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Please post your equation and we'll see if we can work it out :)
\[\sum_{n=1}^{\infty} 1+3^{n}/2^{n}\]
determine whether the series is convergent or divergent if convergent find the sum

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I'm not as confident as I would like to be in this type of problem. I'm going to let the others help you out :)
I believe the series is divergent. Simplifying gives us \[1+(\frac{ 3 }{ 2 })^n\] If we were to substitute n with infinity, we'd see that the terms would grow exponentially. \[\lim_{n \rightarrow \infty}1+(\frac{ 3 }{ 2 })^n=\infty\]
Does this make sense?
yes thank you
You are welcome :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question