Is this still considered a correct answer?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Is this still considered a correct answer?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I was supposed to write an expression for the apparent nth term of the sequence (assume n begins with 1) : 1, -1, 1, -1, 1
I came up with \[a_{n}=\frac{ (-1)^n }{ -1 }\]
but the answer key says it's\[a_{n}= (-1)^{n+1}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

both should yield the same result
essentially, the difference between your answer and the textbook answer is that yours divides each consecutive term by -1 and the other answer multiplies each consecutive term by -1, which produces the same sequence an = (-1)^(n+1) = (-1)^n * (-1)^1, using our exponent rules
^_^ thanks!

Not the answer you are looking for?

Search for more explanations.

Ask your own question