anonymous
  • anonymous
Will medal and Fan!!!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Given (Line segment) AB, explain how to construct a square with sides of length AB.
anonymous
  • anonymous
Can you help @Photon336
anonymous
  • anonymous
No!! It just that question, I think it about construction like with a compass and protractor. But i have no idea how to do that!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Oh. wait I see I would explain it by saying something like first you would take your compass and open it to the length of AB and then go through the steps right!
Photon336
  • Photon336
you could use the protractor to measure out the line segment
Directrix
  • Directrix
Protractors may not be used in classic Greek constructions - just a straighedge.
anonymous
  • anonymous
right a straight edge but would that be right if you did that then you would explain the steps=)
Directrix
  • Directrix
You cannot use any measuring device. Do you want me to show you a way to do the construction?
anonymous
  • anonymous
yes please, I'm confused =(
Directrix
  • Directrix
Start with a given segment AB. We do not know how many inches long it is. |dw:1444186643797:dw|
anonymous
  • anonymous
Yes okay
Directrix
  • Directrix
Next, draw a working line. On it, you will eventually mark off the length of segment AB.| dw:1444186761133:dw|
anonymous
  • anonymous
how do you draw a working line?
Directrix
  • Directrix
On the working line, locate a point (not an end point) and call it A. Draw a working line with the straightedge. No specific length. |dw:1444186886889:dw|
anonymous
  • anonymous
ohh okay.
Directrix
  • Directrix
Go to the given segment AB. Open the compass. Place the sticky foot on point A. Stretch the compass so that the sticky foot stays on A while you open the compass just far enough to place the pencil end of the compass on point B. The sticky foot and the pencil foot are now the length of AB apart.
anonymous
  • anonymous
but isn't that a measuring tool? Because your telling how big the line is now?
Directrix
  • Directrix
Now, go to the working line and place the sticky foot on the point A on the working line. Swing the compass (draw an arc) with the sticky foot on A and when you swing the compass and intersect the working line, call that point B. Yes, we are measuring in a sense but not with a ruler. At no time will we have any lengths in inches.
Directrix
  • Directrix
|dw:1444187235335:dw|
anonymous
  • anonymous
ohh okay go on..
Directrix
  • Directrix
We will now make a right angle at A on the working line. Squares have right interior angles.
anonymous
  • anonymous
yep squares have 4 right angles lol!
anonymous
  • anonymous
do you accomplish this right angle with a protractor?
Directrix
  • Directrix
Close the compass to about 1/3 the width it had. Then, put the sticky foot on A and swing to the right and left of A. Do the same thing at point B using the SAME compass width. |dw:1444187336567:dw|
Directrix
  • Directrix
Open the compass a tiny bit more. Place the sticky foot on the point where the arc to the left of point A intersected the working line. From that point, swing an arc long enough to go above point A |dw:1444187611034:dw|
Directrix
  • Directrix
Now, put the sticky foot on the intersection of the arc to the right of point A and swing the same arc. Take note of where the two arcs intersect. |dw:1444187691528:dw|
Directrix
  • Directrix
>>do you accomplish this right angle with a protractor? NO, use a protractor at any point and the construction is incorrect. Put the protractor out of sight.
anonymous
  • anonymous
yeah I figured that out once u showed u next reply lol
Directrix
  • Directrix
The two arcs that were just drawn above point A - do the same for point B. |dw:1444187840266:dw|
Directrix
  • Directrix
Two points determine a line. Use the straightedge to join point A to the point determined by the intersection of the 2 arcs above point A. |dw:1444187914876:dw|
Directrix
  • Directrix
Do the same for B. |dw:1444187942531:dw|
anonymous
  • anonymous
oh i get it would you do the same for the top by using the compass in the same way to reach the top segment?
Directrix
  • Directrix
We have created right angles with vertices A and B. Now, get the measure of AB back on the compass.
anonymous
  • anonymous
okay
Directrix
  • Directrix
With the measure of AB on the compass, place the sticky foot on A and draw an arc above A that intersects the extended segment we just drew upwards from point A. |dw:1444188127641:dw|
Directrix
  • Directrix
We clipped off length AB on that segment. Now, do the same for the extended segment from point B on the working line. |dw:1444188215585:dw|
anonymous
  • anonymous
ohh then you would do the same for b and then you would use u straigh edge right?
Directrix
  • Directrix
Yes. Last step coming up.
Directrix
  • Directrix
Use the straightedge to join the 2 points where the last arcs we drew intersected the lines extending upwards from points A and B on the working line. |dw:1444188336677:dw|
Directrix
  • Directrix
There is the constructed square with side AB. I named it square ABCD.
anonymous
  • anonymous
thank you so much!! i understand now lol
Directrix
  • Directrix
You are welcome.

Looking for something else?

Not the answer you are looking for? Search for more explanations.