Ridge counts on fingerprints are approx. normally distributed, with a mean of about 140 and standard deviation of 50. What does the 68-99-95.7% Rule tell us about ridge counts on fingerprints?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Ridge counts on fingerprints are approx. normally distributed, with a mean of about 140 and standard deviation of 50. What does the 68-99-95.7% Rule tell us about ridge counts on fingerprints?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

one sec
Note that the range "within one standard deviation of the mean" is highlighted in green. The area under the curve over this range is the relative frequency of observations in the range. That is, 0.68 = 68% of the observations fall within one standard deviation of the mean, or, 68% of the observations are between (mu - sigma) and (mu + sigma). Below the axis, in red, is another set of numbers. These numbers are simply measures of standard deviations from the mean. In working with the variable X we will often find it necessary to convert into units of standard deviations from the mean. When the variable is measured this way, the letter Z is commonly used.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question