rachie19
  • rachie19
How are ATPS and NADPH made (chemiosmotic photo phosphorylation) in the light dependent reactions of photosynthesis
Biology
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Light energy splits water and extracts electrons in photosystem II (PSII); then electrons are moved from PSII to cytochrome b6f to photosystem I (PSI) and reduce in energy. Electrons are re-energized in PSI and those high energy electrons reduce NADP+ to NADPH. In non-cyclic photophosphorylation, cytochrome b6f uses the energy of electrons from PSII to pump hydrogen ions from the lumen to the stroma; this energy allows ATP synthase to attach a third phosphate group to ADP, which forms ATP. In cyclic photophosphorylation, cytochrome b6f uses the energy of electrons from both PSII and PSI to create more ATP and to stop the production of NADPH, maintaining the right proportions of NADPH and ATP
rachie19
  • rachie19
@MTM but in chemiosmotic photo phosphorylation
rachie19
  • rachie19
?

Looking for something else?

Not the answer you are looking for? Search for more explanations.