anonymous
  • anonymous
In ΔABC, if m ∠A = m∠C, m∠B = ß (where ß is an acute angle), and BC = x, which expression gives the length of b, the side opposite ∠B ?
Geography
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
@Lexaaa_ganja
anonymous
  • anonymous
whatre the answer options
anonymous
  • anonymous
|dw:1444236085588:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

FireKat97
  • FireKat97
|dw:1444289573188:dw| since we are told ∠A = ∠C we know that ABC is an issueless triangle where AB = BC = x so we get the above diagram. so now, to find side b, we can use the cosine rule which states \[c^2 = a^2 + b^2 - 2abcosC\]|dw:1444290019267:dw| so we can apply this to our question, to get, \[b^2 = x^2 + x^2 - 2(x)(x)\cosß\] which simplifies down to \[b = \sqrt{2x^2 - 2x^2\cosß}\] and you can factor the \[2x^2\] to the from to get \[b = \sqrt{2x^2(1 - \cosß)}\] ...Hope that made sense :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.