anonymous
  • anonymous
Which statement is equivalent to |x + 8| < 13? A. -13 < x + 8 < 13 B. x + 8 < 13 or x + 8 > 13 C. x + 8 < 13 D. x + 8 < - 13 Is it B?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Vocaloid
  • Vocaloid
nope hint: for absolute value inequalities, if |A| < B that means - B < A < B
anonymous
  • anonymous
Oops b is supposed to be x + 8< 13 or x+ 8 < - 13 sorry
Vocaloid
  • Vocaloid
it's still not B, think about my hint carefully

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Is it a?
anonymous
  • anonymous
im thinking c or d
Vocaloid
  • Vocaloid
a is correct
anonymous
  • anonymous
congrats
anonymous
  • anonymous
she said a is correct
anonymous
  • anonymous
Yes! Thanks guys
anonymous
  • anonymous
lol
anonymous
  • anonymous
i can
anonymous
  • anonymous
|x + 24| > 108
anonymous
  • anonymous
A. x+ 24 >108 or x + 24 <- 108 B. x + 24 > 108 C. -108 < x + 24 < 108 D. x + 24 < -108
Vocaloid
  • Vocaloid
this one's a bit different when we have |A| > B then our inequality can be written as A > B or A < - B
anonymous
  • anonymous
So a?

Looking for something else?

Not the answer you are looking for? Search for more explanations.