KJ4UTS
  • KJ4UTS
Which of the following best describes the end behavior of this polynomial function?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
KJ4UTS
  • KJ4UTS
Michele_Laino
  • Michele_Laino
we can rewrite your polynomial function as below: \[y = {x^4}\left( {a + \frac{b}{x} + \frac{c}{{{x^2}}} + \frac{d}{{{x^3}}} + \frac{e}{{{x^4}}}} \right)\] now if x goes to +infinity or -infinity, then the sum inside the parentheses goes to a
Michele_Laino
  • Michele_Laino
and: \(a\cdot x^4\) goes to +infinity, being \(a>0\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

KJ4UTS
  • KJ4UTS
I see that B. and C. have positive infinity
Michele_Laino
  • Michele_Laino
f(x) never goes to -infinity
KJ4UTS
  • KJ4UTS
Oh I see so that would make it choice B. then because C. goes to - infinity
Michele_Laino
  • Michele_Laino
correct! the right option is B
KJ4UTS
  • KJ4UTS
@Michele_Laino Ok thank you so when a > 0 (greater sigh) it can only go to positive infinity and in a < 0 (less than) it can go to negative infinity?
Michele_Laino
  • Michele_Laino
if \(a<0\) your polynomial function goes to -infinity, in both cases as x goes to +infinity or to -infinity
KJ4UTS
  • KJ4UTS
Ok thank you :)
Michele_Laino
  • Michele_Laino
:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.