Which of the following best describes the end behavior of this polynomial function?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Which of the following best describes the end behavior of this polynomial function?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

we can rewrite your polynomial function as below: \[y = {x^4}\left( {a + \frac{b}{x} + \frac{c}{{{x^2}}} + \frac{d}{{{x^3}}} + \frac{e}{{{x^4}}}} \right)\] now if x goes to +infinity or -infinity, then the sum inside the parentheses goes to a
and: \(a\cdot x^4\) goes to +infinity, being \(a>0\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I see that B. and C. have positive infinity
f(x) never goes to -infinity
Oh I see so that would make it choice B. then because C. goes to - infinity
correct! the right option is B
@Michele_Laino Ok thank you so when a > 0 (greater sigh) it can only go to positive infinity and in a < 0 (less than) it can go to negative infinity?
if \(a<0\) your polynomial function goes to -infinity, in both cases as x goes to +infinity or to -infinity
Ok thank you :)
:)

Not the answer you are looking for?

Search for more explanations.

Ask your own question