Use continuity to evaluate the limit: Sin^-1( sqrt(x^4+1)/(2x^2+3)) What does it mean by using continuity? If I were to write work for this on a test, how would I show my work?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Use continuity to evaluate the limit: Sin^-1( sqrt(x^4+1)/(2x^2+3)) What does it mean by using continuity? If I were to write work for this on a test, how would I show my work?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(\large\color{slate}{\displaystyle\lim_{x \rightarrow ~\infty}{~~}\sin^{-1}\left(\frac{\sqrt{x^4+1}}{2x^2+3}\right)}\) like this ??
correct I didn't know the syntax for writing it out like that.
I know the answer is pi/6, I just need to know how to show my work using continuity.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

using continuity, basically enables you to bring the limit inside.... (like I did below) \(\large\color{slate}{\displaystyle\lim_{x \rightarrow ~\infty}{~~}\sin^{-1}\left(\frac{\sqrt{x^4+1}}{2x^2+3}\right)=\sin^{-1}\left(\lim_{x \rightarrow ~\infty}\frac{\sqrt{x^4+1}}{2x^2+3}\right)}\)
because the limit of arcsine is continuous right?
because arcsine is a continuous (as well as differentiable) function.
alright, I think I get it now have a calc exam today and had to make sure I was understanding everything Thank you for your help
Then, you can do this: \(\large\color{slate}{\displaystyle\sin^{-1}\left(\lim_{x \rightarrow ~\infty}\frac{\sqrt{x^4+1}}{2x^2+3}\right)}\) \(\large\color{slate}{\displaystyle\sin^{-1}\left(\lim_{x \rightarrow ~\infty}\frac{\sqrt{x^4+1}}{\sqrt{\left(2x^2+3\right)^2}}\right)}\) for infinitely large values 2x^2+3 is same as |2x^2+3|, so this is what allows me to perform to perform the step above. \(\large\color{slate}{\displaystyle\sin^{-1}\left(\lim_{x \rightarrow ~\infty}\sqrt{\frac{x^4+1}{\left(2x^2+3\right)^2}}\right)}\) then once again, you can use the fact that the function (the argument, the limit of which you are taking) is continuous. So you can bring the limit into the square root. \(\large\color{slate}{\displaystyle\sin^{-1}\left(\sqrt{\lim_{x \rightarrow ~\infty}\frac{x^4+1}{\left(2x^2+3\right)^2}}\right)}\)
when you expand this, you will get: \(\large\color{slate}{\displaystyle\sin^{-1}\left(\sqrt{\lim_{x \rightarrow ~\infty}\frac{x^4+1}{4x^4+12x^2+9}}~\right)}\) then, from there you know: \(\large\color{slate}{\displaystyle\sin^{-1}\left(\sqrt{\lim_{x \rightarrow ~\infty}\frac{1x^4+1}{4x^4+12x^2+9}}~\right)=\sin^{-1}\left(\sqrt{\lim_{x \rightarrow ~\infty}\frac{1}{4}}~\right)}\)
*√(1/4)*=1/2 So, the inverse sin of 1/2 is .....

Not the answer you are looking for?

Search for more explanations.

Ask your own question