anonymous
  • anonymous
A block of mass m is at rest on a 20° slope. The coefficient of static friction between the box and the floor is 0.64. The block is connected by a massless string over a massless, frictionless pulley to a hanging block of mass 2.0 kg. What is the minimum mass m that will stick to the surface and not rise up the slope?
Physics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
zephyr141
  • zephyr141
as always draw your Full Body Diagram out. then label the forces acting on each object.
zephyr141
  • zephyr141
|dw:1444245859571:dw|
zephyr141
  • zephyr141
for m2 do this\[y:T-m_2g=0\]\[y:T=m_2g\]then for the block on the incline\[y:n-m_1gsin20=0\]\[y:n=m1gsin20\]and for x\[x:T-f=0\]\[x:T=f\]\[x:T=\mu n\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

zephyr141
  • zephyr141
\[m_2*g=\mu *m_1*g*\sin20\]put in your known values and solve for m1. i think this is how you do it.
zephyr141
  • zephyr141
\[m_2=\mu m_1\sin20\]
zephyr141
  • zephyr141
g could be divided out.
zephyr141
  • zephyr141
damn i forgot one force. hold on.
zephyr141
  • zephyr141
ok it should be this...\[m_1=\frac{m_2}{\mu \sin20+\cos20}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.