anonymous
  • anonymous
Simplify: ln e1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
SolomonZelman
  • SolomonZelman
\(\ln(e^1)\) ?
SolomonZelman
  • SolomonZelman
like that?
anonymous
  • anonymous
yea like that

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

misty1212
  • misty1212
\(e^1\)?? must be an algorithmically generated question a human being would write (e\)
anonymous
  • anonymous
yes
SolomonZelman
  • SolomonZelman
Ok, you know that any number raised to an exponent of \(\color{black}{\LARGE _{^1}}\), is that number itself: \(\color{black}{a^1=a}\)
anonymous
  • anonymous
oh wow that was so simple.
SolomonZelman
  • SolomonZelman
And, just like: \(\log_a(a)=1\) \(\log_e(e)=\ln(e)=?\)
anonymous
  • anonymous
so it would be e?
SolomonZelman
  • SolomonZelman
again, I mentioned a property: \(\large \log_a(a)=1\) And number e also satisfies that property: So, the expression below would be equivalent to what? \(\large\log_e(e)=?\)
anonymous
  • anonymous
1
SolomonZelman
  • SolomonZelman
Yes
SolomonZelman
  • SolomonZelman
So, \(\large\ln(e)=\log_e(e)=1\)
anonymous
  • anonymous
thankyou thankyou thankyouu !
SolomonZelman
  • SolomonZelman
\(\color{blue}{\Large \mathbb{Y}\unicode{x22a1} \mathbb{U}~~ \mathbb{WELC} \unicode{x22a1}\mathbb{ME}}\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.