anonymous
  • anonymous
What is the equation of the oblique asymptote? h(x) = x^2-3x-4/x+1 a y=x+4 b y=x^2-3 c y=x d y=x-4
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
misty1212
  • misty1212
HI!!
misty1212
  • misty1212
divide
misty1212
  • misty1212
you will get a quotient and a remainder ignore the remainder, the quotient is your obliques asymptote

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
So the answer is D?
anonymous
  • anonymous
@misty1212
campbell_st
  • campbell_st
that's correct
anonymous
  • anonymous
awesome Thanks!
campbell_st
  • campbell_st
well it's not awesome as the equation doesn't have an oblique asymptote... if you factor the numerator \[\frac{x^2 - 3x -4}{x +1} = \frac{(x - 4)(x + 1)}{x +1} \] you'll find the equation simplifies to a linear form y = x - 4 and there is a point of discontinuity at x = -1 hope it helps

Looking for something else?

Not the answer you are looking for? Search for more explanations.