A community for students.

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

Uniqueartist1

  • one year ago

ax + by = cz where A, B, C, x, y and z are positive integers and x, y and z are all greater than 2, then A, B and C must have a common prime factor. The challenge is to either solve that conjecture or come up with a counter-example. can somebody help me solve this?

  • This Question is Closed
  1. thomas5267
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    2*10+1*3=1*23 I do not see any common factors since 1 is not a prime.

  2. thomas5267
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 1

    The example I just given may not be very convincing so I will give you another one. Let c=3 since it is a prime. Let x and y be positive integers that is greater than 2 and divisible by 3, say x=6 and y=15. Let a and b be positive integers that are not divisible by 3, say a=2 and b=5. 2*6+5*15=3*z 12+75=3*z 87=3*z z=29 x=6, y=15, z=29, all greater than 2. a=2, b=5, c=3, no common prime factors for all three numbers. In fact, a,b,c are pairwise coprime.

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.