narissa
  • narissa
when dividing exponents for division do u subtact?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
jim_thompson5910
  • jim_thompson5910
You mean something like this? \[\LARGE \frac{x^8}{x^3}\]
narissa
  • narissa
yes
narissa
  • narissa
1 Attachment

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

jim_thompson5910
  • jim_thompson5910
yes, you subtract the exponents (top - bottom) \[\LARGE \frac{x^8}{x^3} = x^{8-3} = x^5\] this only works if the bases are the same. In this case, they are both x
narissa
  • narissa
so it would be c
jim_thompson5910
  • jim_thompson5910
top exponent = 12 bottom exponent = -3 top - bottom = (top) - (bottom) = (12) - (-3) = ??? it's not going to be 9
narissa
  • narissa
d
jim_thompson5910
  • jim_thompson5910
yes 12 - (-3) = 12+3 = 15
narissa
  • narissa
thanks can u help me with a few more?
jim_thompson5910
  • jim_thompson5910
sure, one more
jim_thompson5910
  • jim_thompson5910
post as a new question and tag me in it

Looking for something else?

Not the answer you are looking for? Search for more explanations.