anonymous
  • anonymous
Need help with Riemann sum equation
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\int\limits_{1}^{6}4x-2dx\] n=3, so using 3 rectangles and left endpoints
SolomonZelman
  • SolomonZelman
If you want the rectangles to be even, \(\Delta x=\dfrac{b-a}{n}=\dfrac{6-1}{3}=\dfrac{5}{3}\) So your intervals \([x_0,~~~x_1]\) \([x_1,~~~x_2]\) \([x_2,~~~x_3]\) (And \([x_1=x_0+\Delta x]\) ) are going to be: \([1,~~~1+5/3]\) ---> \([1,~~~8/3]\) \([8/3,~~~8/3+5/3]\) ---> \([8/3,~~~13/3]\) \([13/3,~~~13/3+5/3]\) ---> \([13/3,~~~6]\)
SolomonZelman
  • SolomonZelman
You are doing *left* endpoints, and therefore your first rectangle will have the height of *f(1)*. Then, the second rectangle will have a height of *f(8/3)* and the third rectangle will have a height of *f(13/3)*.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

SolomonZelman
  • SolomonZelman
So basically, your area by reinman sums: assuming that \(\Delta x\) is same (which I found to be 5/3) for all intervals (as I supposed in the beginning), *AND* with the appropriate heights (which I listed accordingly) \(\large\color{black}{ \displaystyle {\rm A}=\frac{5}{3}f(1)+\frac{5}{3}f\left(\frac{8}{3}\right)+\frac{5}{3}f\left(\frac{13}{3}\right) }\) Adding three rectangles. \(\Uparrow\) And then after factoring you get: \(\large\color{black}{ \displaystyle {\rm A}=\frac{5}{3}\color{red}{\left\{\color{black}{f(1)+f\left(\frac{8}{3}\right)+f\left(\frac{13}{3}\right)}\right\}} }\)

Looking for something else?

Not the answer you are looking for? Search for more explanations.