A cylinder is inscribed in a cone as shown in the figure. The radius of the cone is 5 inches and the height is 9 inches. Express the volume, V, of the cylinder in terms of its height, h.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

A cylinder is inscribed in a cone as shown in the figure. The radius of the cone is 5 inches and the height is 9 inches. Express the volume, V, of the cylinder in terms of its height, h.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

given this figure, we'll be able to know that Vcone = 1/3 (2pi(r))(H) = 56pi/3 Vcylinder = pi(r^2)(h) equating both equation we'll get ((1/3) (2)(pi)(r)(H))(4\9) = (pi)(r^2)(h) I hope that this will help you solve the problem(:
We know that the Vcylinder = 4/9 Vcone and Vcylinder = (pi)(r^2)(h) and Vcone = 1/3(B)(H) where: B= area of lower surface of cone and H=the height of cone.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

How do I set this equation up though?
question is incomplete. cylinder can be of any dimensions.
|dw:1444281531164:dw|
I'm confused on how to find the Volume in terms of its height...I understand that V of a cylinder is (pi)rh and volume of a cone is (pi)r^2(h/3)
\[\pi R^2H<\ \frac{ 1 }{ 3 } \pi r^2h,or~3 R^2H
It needs to be V(h) =
|dw:1444348030159:dw|
\[Volume V=\pi \left( \frac{ 5 }{ 9 }\left( 9-h \right) \right)^2h=\frac{ 25 }{ 81 } \pi h \left( 9-h \right)^2\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question