Graph Theory Oberwolfach problem and this Theorem http://prntscr.com/8oz0bm

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Graph Theory Oberwolfach problem and this Theorem http://prntscr.com/8oz0bm

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1444275641548:dw|
|dw:1444275833904:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

i thought they all gotta be connected
No you just have to have the same number of vertices to be a factor, and all the vertices must have degree 2
what do u mean same number of vertices, like your subgraphs of 2 factors should all ahve same number of vertices?
Yeah so to be a k-factor it just means remove edges so that each vertex has degree k.
okay gotchaa!!
alright lets go read on this oberwachj problem
http://prntscr.com/8oz3nc
we can do a practice problem that is like an intro to this
http://prntscr.com/8oz41q

Not the answer you are looking for?

Search for more explanations.

Ask your own question