MTALHAHASSAN2
  • MTALHAHASSAN2
Determine the second derivative of each of the following: F(x)= 2x/x+1
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

triciaal
  • triciaal
|dw:1444277745264:dw|
MTALHAHASSAN2
  • MTALHAHASSAN2
I get f1(x) = 1/(x+1)
triciaal
  • triciaal
then take the derivative of that

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

MTALHAHASSAN2
  • MTALHAHASSAN2
F2(x)=1/2(x+1)
triciaal
  • triciaal
|dw:1444278472990:dw|
triciaal
  • triciaal
|dw:1444278582128:dw|
triciaal
  • triciaal
@dan815 @Directrix please verify
MTALHAHASSAN2
  • MTALHAHASSAN2
hey I am still very confuse with it
MTALHAHASSAN2
  • MTALHAHASSAN2
|dw:1444290942838:dw|
triciaal
  • triciaal
yes I did above
MTALHAHASSAN2
  • MTALHAHASSAN2
@directrix I do get that but I am struggle with the second one
triciaal
  • triciaal
|dw:1444280370149:dw|
triciaal
  • triciaal
triciaal
  • triciaal
@zepdrix thanks
zepdrix
  • zepdrix
\[\large\rm f'(x)=\frac{2}{(x+1)^2}\]You can apply your exponent rule,\[\large\rm f'(x)=2(x+1)^{-2}\]And this allows you to avoid quotient rule a second time if you like. Simply power rule from here.
Directrix
  • Directrix
@triciaal is correct |dw:1444282442944:dw| And, f''(x) = (-4)/(x+1)^3
triciaal
  • triciaal
triciaal
  • triciaal
|dw:1444283880287:dw|
triciaal
  • triciaal
|dw:1444283972527:dw|
triciaal
  • triciaal
|dw:1444284157990:dw|
triciaal
  • triciaal
what I did originally was just use the quotient rule a second time. what @zepdrix suggested was applied here. (remember multiplication and division are complements).
triciaal
  • triciaal
|dw:1444284521015:dw|
triciaal
  • triciaal
|dw:1444285027191:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.