anonymous
  • anonymous
x^6-64 facotr as a diffrence of square and cube please help
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
is it -4(x+6) . my firend got that answer. didnt tell me how to do it tho
Directrix
  • Directrix
x^6-64 = (x^3)^2 - (8)^2 = ( x^3 + 8) * (x^3 - 8) That is the factorization into 2 squares.
Directrix
  • Directrix
>>is it -4(x+6) NO

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Directrix
  • Directrix
Factor x^6-64 as difference of 2 cubes. Factoring pattern is attached.
anonymous
  • anonymous
im going to try the cube and see what i get
anonymous
  • anonymous
x--4(x^3+4x+16)
anonymous
  • anonymous
i think
Directrix
  • Directrix
x^6-64 = [ (x^2)^3 - (4)^3) ] = [ x^2 - 4 ] * [ (x^2)^2 + (x^2)*4) + (-4)^2 ]
anonymous
  • anonymous
(x-4)(x^2+4x+4^2)
Directrix
  • Directrix
[ x^2 - 4 ] * [ (x^2)^2 + (x^2)*4) + (-4)^2 ] = (x^2 -4) (x^4 + 4x^2 + 16)
anonymous
  • anonymous
okay i see what i did wrong . i dont know where i got a 3 from. thank you for the help . both of you
Directrix
  • Directrix
I am uncertain about the instructions. Taking it from the top: x^6-64 = (x^3)^2 - (8)^2 = ( x^3 + 8) * (x^3 - 8) = (x + 2) ( x^2 -2x + 4) (x - 2) (x^2 + 2x + 4)
Directrix
  • Directrix
You are welcome.

Looking for something else?

Not the answer you are looking for? Search for more explanations.