Mimi_x3
  • Mimi_x3
how did they get
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Mimi_x3
  • Mimi_x3
https://gyazo.com/6d30211480b5b462920c3422c3b34ec4
Mimi_x3
  • Mimi_x3
I dont underestand how they got this: https://gyazo.com/eec65af84bb1fd9cde28b386bf62caaa
Mimi_x3
  • Mimi_x3
is that an integral properoty

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
days of fourier series. >.<
anonymous
  • anonymous
integral of 0 is just 0...
ParthKohli
  • ParthKohli
\[\frac{1}{L}\int_{-L}^L f(x) = \frac{1}{2}\int_{-2}^2f(x)\]Probably used the periodicity of the function?
thomas5267
  • thomas5267
\[ \int_1^20\,dx=[c]_1^2=c-c=0\\ \frac{d}{dx}c=0 \]
IrishBoy123
  • IrishBoy123
read it again and pay attention to how they break up th eintervals of integration, first by symmetry then into 1's and 0's.
Mimi_x3
  • Mimi_x3
i mean integartion limts like 2 to 0 then they got 1 to 0 then 2 to 1
IrishBoy123
  • IrishBoy123
|dw:1444307327150:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.