A community for students.
Here's the question you clicked on:
 0 viewing
anonymous
 one year ago
ques
anonymous
 one year ago
ques

This Question is Closed

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0Do you have a question for us to answer? @Nishant_Garg

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0How can I prove that \[(dV)_{cylindrical}=\rho d \rho d \varphi dz\] From the quadratic equation of differentials, \[(ds)^2=h_{1}^2(du)^2+h_{2}^2(dv)^2+h_{3}^2(dw)^2\] For cartesian we have \[(ds)^2=(dx)^2+(dy)^2+(dz)^2\] and Thus I can intuitively tell that \[dx=h_{1}du \space \space ; \space \space dy=h_{2}dv \space \space ; \space \space dz=h_{3}dw\] \[dV=dxdydz\] So we get \[dV=h_{1}h_{2}h_{3}dudvdw\] Therefore \[(dV)_{cylindrical}=\rho d\rho d\varphi dz\] But my intuition can be wrong, is this good enough?

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0Also check the following \[\nabla^2\phi=\frac{1}{\rho}\frac{\partial}{\partial \rho}(\rho \frac{\partial \phi}{\partial \rho})+\frac{1}{\rho^2}\frac{\partial^2 \phi}{\partial \varphi^2}+\frac{\partial^2\phi}{\partial z^2}\] \[\nabla^2\phi=\frac{1}{\rho}(\frac{\partial \phi}{\partial \rho}+\rho\frac{\partial^2\phi}{\partial \rho^2})+\frac{1}{\rho^2}\frac{\partial^2 \phi}{\partial \varphi^2}+\frac{\partial^2 \phi}{\partial z^2}\] \[\nabla^2\phi=\frac{1}{\rho}\frac{\partial \phi}{\partial \rho}+\frac{\partial^2\phi}{\partial \rho^2}+\frac{1}{\rho^2}\frac{\partial^2 \phi}{\partial \varphi^2}+\frac{\partial^2 \phi}{\partial z^2}\] \[\nabla^2\phi=(\frac{1}{\rho}\frac{\partial }{\partial \rho}+\frac{\partial^2}{\partial \rho^2}+\frac{1}{\rho^2}\frac{\partial^2 }{\partial \varphi^2}+\frac{\partial^2}{\partial z^2})\phi\] \[\implies\nabla^2 \equiv\frac{1}{\rho}\frac{\partial }{\partial \rho}+\frac{\partial^2}{\partial \rho^2}+\frac{1}{\rho^2}\frac{\partial^2 }{\partial \varphi^2}+\frac{\partial^2}{\partial z^2}\] and \[\nabla^2\phi=\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial \phi}{\partial r})+\frac{1}{r^2\sin(\theta)}\frac{\partial}{\partial \theta}(\sin(\theta)\frac{\partial \phi}{\partial \theta})+\frac{1}{r^2\sin^2(\theta)}\frac{\partial^2 \phi}{\partial \varphi^2}\]\[\nabla^2\phi=\frac{1}{r^2}(2r\frac{\partial \phi}{\partial r}+r^2\frac{\partial^2\phi}{\partial r^2})+\frac{1}{r^2\sin(\theta)}(\cos(\theta)\frac{\partial \phi}{\partial \theta}+\sin(\theta)\frac{\partial^2 \phi}{\partial \theta^2})+\]\[...+\frac{1}{r^2\sin^2(\theta)}\frac{\partial^2\phi}{\partial \varphi^2}\] \[\nabla^2\phi=\frac{2}{r}\frac{\partial \phi}{\partial r}+\frac{\partial^2\phi}{\partial r^2}+\frac{1}{r^2}(\cot(\theta)\frac{\partial \phi}{\partial \theta}+\frac{\partial^2 \phi}{\partial \theta^2})+\frac{1}{r^2\sin^2(\theta)}\frac{\partial^2 \phi}{\partial \varphi^2}\] \[\nabla^2\phi=[\frac{2}{r}\frac{\partial}{\partial r}+\frac{\partial^2}{\partial r^2}+\frac{1}{r^2}(\cot(\theta)\frac{\partial}{\partial \theta}+\frac{\partial^2}{\partial \theta^2})+\frac{1}{r^2\sin^2(\theta)}\frac{\partial^2}{\partial \varphi^2}]\phi\] \[\nabla^2\equiv\frac{2}{r}\frac{\partial}{\partial r}+\frac{\partial^2}{\partial r^2}+\frac{1}{r^2}(\cot(\theta)\frac{\partial}{\partial \theta}+\frac{\partial^2}{\partial \theta^2})+\frac{1}{r^2\sin^2(\theta)}\frac{\partial^2}{\partial \varphi^2}\]

IrishBoy123
 one year ago
Best ResponseYou've already chosen the best response.1for the first question, one would ordinarily use a simple geometric proof; or a Jacobian (linked) if you want to mechanically to go from rectangular to cylindrical http://www.usciences.edu/~lvas/Calc3/Triple_substitution.pdf i say this only because i personally see no intuition in connecting arc length: ie \((ds)^2=(dx)^2+(dy)^2+(dz)^2\) with volume maybe there is one but i don't see it.

anonymous
 one year ago
Best ResponseYou've already chosen the best response.0Then the question is why does dxdydz becomes Jdudvdw?
Ask your own question
Sign UpFind more explanations on OpenStudy
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.