anonymous
  • anonymous
ques
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Do you have a question for us to answer? @Nishant_Garg
anonymous
  • anonymous
How can I prove that \[(dV)_{cylindrical}=\rho d \rho d \varphi dz\] From the quadratic equation of differentials, \[(ds)^2=h_{1}^2(du)^2+h_{2}^2(dv)^2+h_{3}^2(dw)^2\] For cartesian we have \[(ds)^2=(dx)^2+(dy)^2+(dz)^2\] and Thus I can intuitively tell that \[dx=h_{1}du \space \space ; \space \space dy=h_{2}dv \space \space ; \space \space dz=h_{3}dw\] \[dV=dxdydz\] So we get \[dV=h_{1}h_{2}h_{3}dudvdw\] Therefore \[(dV)_{cylindrical}=\rho d\rho d\varphi dz\] But my intuition can be wrong, is this good enough?
anonymous
  • anonymous
@ganeshie8

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Also check the following \[\nabla^2\phi=\frac{1}{\rho}\frac{\partial}{\partial \rho}(\rho \frac{\partial \phi}{\partial \rho})+\frac{1}{\rho^2}\frac{\partial^2 \phi}{\partial \varphi^2}+\frac{\partial^2\phi}{\partial z^2}\] \[\nabla^2\phi=\frac{1}{\rho}(\frac{\partial \phi}{\partial \rho}+\rho\frac{\partial^2\phi}{\partial \rho^2})+\frac{1}{\rho^2}\frac{\partial^2 \phi}{\partial \varphi^2}+\frac{\partial^2 \phi}{\partial z^2}\] \[\nabla^2\phi=\frac{1}{\rho}\frac{\partial \phi}{\partial \rho}+\frac{\partial^2\phi}{\partial \rho^2}+\frac{1}{\rho^2}\frac{\partial^2 \phi}{\partial \varphi^2}+\frac{\partial^2 \phi}{\partial z^2}\] \[\nabla^2\phi=(\frac{1}{\rho}\frac{\partial }{\partial \rho}+\frac{\partial^2}{\partial \rho^2}+\frac{1}{\rho^2}\frac{\partial^2 }{\partial \varphi^2}+\frac{\partial^2}{\partial z^2})\phi\] \[\implies\nabla^2 \equiv\frac{1}{\rho}\frac{\partial }{\partial \rho}+\frac{\partial^2}{\partial \rho^2}+\frac{1}{\rho^2}\frac{\partial^2 }{\partial \varphi^2}+\frac{\partial^2}{\partial z^2}\] and \[\nabla^2\phi=\frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial \phi}{\partial r})+\frac{1}{r^2\sin(\theta)}\frac{\partial}{\partial \theta}(\sin(\theta)\frac{\partial \phi}{\partial \theta})+\frac{1}{r^2\sin^2(\theta)}\frac{\partial^2 \phi}{\partial \varphi^2}\]\[\nabla^2\phi=\frac{1}{r^2}(2r\frac{\partial \phi}{\partial r}+r^2\frac{\partial^2\phi}{\partial r^2})+\frac{1}{r^2\sin(\theta)}(\cos(\theta)\frac{\partial \phi}{\partial \theta}+\sin(\theta)\frac{\partial^2 \phi}{\partial \theta^2})+\]\[...+\frac{1}{r^2\sin^2(\theta)}\frac{\partial^2\phi}{\partial \varphi^2}\] \[\nabla^2\phi=\frac{2}{r}\frac{\partial \phi}{\partial r}+\frac{\partial^2\phi}{\partial r^2}+\frac{1}{r^2}(\cot(\theta)\frac{\partial \phi}{\partial \theta}+\frac{\partial^2 \phi}{\partial \theta^2})+\frac{1}{r^2\sin^2(\theta)}\frac{\partial^2 \phi}{\partial \varphi^2}\] \[\nabla^2\phi=[\frac{2}{r}\frac{\partial}{\partial r}+\frac{\partial^2}{\partial r^2}+\frac{1}{r^2}(\cot(\theta)\frac{\partial}{\partial \theta}+\frac{\partial^2}{\partial \theta^2})+\frac{1}{r^2\sin^2(\theta)}\frac{\partial^2}{\partial \varphi^2}]\phi\] \[\nabla^2\equiv\frac{2}{r}\frac{\partial}{\partial r}+\frac{\partial^2}{\partial r^2}+\frac{1}{r^2}(\cot(\theta)\frac{\partial}{\partial \theta}+\frac{\partial^2}{\partial \theta^2})+\frac{1}{r^2\sin^2(\theta)}\frac{\partial^2}{\partial \varphi^2}\]
IrishBoy123
  • IrishBoy123
for the first question, one would ordinarily use a simple geometric proof; or a Jacobian (linked) if you want to mechanically to go from rectangular to cylindrical http://www.usciences.edu/~lvas/Calc3/Triple_substitution.pdf i say this only because i personally see no intuition in connecting arc length: ie \((ds)^2=(dx)^2+(dy)^2+(dz)^2\) with volume maybe there is one but i don't see it.
anonymous
  • anonymous
Then the question is why does dxdydz becomes |J|dudvdw?

Looking for something else?

Not the answer you are looking for? Search for more explanations.