Find all values of z such that z^4 = -4 Please, help

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find all values of z such that z^4 = -4 Please, help

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\(z = |z|e^{i\theta}\) \(z^4 = |z|^4 e^{4i\theta} = -4 = 4e^{i\pi }\) Hence \(|z|^4 = 4 \rightarrow |z|=\sqrt2\) \(4i\theta = i(\pi+2k\pi) : k\in \mathbb Z\) then \(\theta = \pi/4 + k\pi/2\), Now I stuck. what is k?
\[-1=\cos(\pi+2 k \pi)+i \sin(\pi+2 k \pi) \\ -4=4e^{ \pi+2 k \pi} \\ z^4=4 e^{\pi+2k \pi} \\ \text{ now we want 4 roots } \\ \text{ so } k=0,1,2,3\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes, I am crazy.This is what I did if k =0, then \(z = \sqrt2 e^{\pi/4}= \sqrt2(cos (\pi/4) + isin(\pi/4))= 1+i\) but then z^4 =(1+i)^4 from this I take |1+i| to get \sqrt 2, then ^4 and get 4, not -4. That throws me off. Thanks @freckles
@Crazy_questions senior in University.
grade is it 10th?
I have another question, @freckles
\[(1+i)^4=(1+i)^2(1+i)^2=(1+2i+i^2)(1+2i+i^2) \\ (1+i)^4=(2i)(2i)=4i^2=-4\]
\(|\dfrac{(2 + 3i)^4}{3-i)^2}|= \dfrac{|(2+3i)^4|}{|(3-i)^2|} =\dfrac{|2+3i|^4}{|3-i|^2}\)
Can I do that? since \(|2+ 3i| = \sqrt{4+(3)^2} = \sqrt{13} \) and \(|3-i|= \sqrt{3^2 + (-1)^2} = \sqrt {10}\)
If I can do that, then I can save my time
you see what the wolfram does. It takes a very long process to get my answer http://www.wolframalpha.com/input/?i=evalulate+|%282%2B3i%29^4%2F%283-i%29^2|
yes I believe that is right I was going to try to prove: \[|(a+bi)^n|=|a+bi|^n\] but the way I was going about it was taking too long
well I don't have the wolfram plus or whatver it is call to see what they have
or did
You can access to it free up to 3 problems
they expanded first right?
yea
I tested many times. They did what I did.
I have class in 15 minutes, still have many questions need help. Would you mind to help me out while I am not here ?
\[|(re^{i \theta})^n|=|r^n| |e^{i \theta n}| \\ \ \text{ assume } r>0 \\ \text{ then } |r^n|=r^n \\ \\ |(r e^{i \theta})^n|=r^n |e^{i \theta n}|=r^n| \cos(\theta n)+ i \sin(\theta n)| \\ =r^n \sqrt{\cos^2(\theta n )+ \sin^2(\theta n)} =r^n \\ |r e ^{i \theta}|^n=|r|^n |e^{ i \theta}|^n =r^n |e^{i \theta}|^n \text{ still assuming } r>0 \\ |r e ^{ i \theta}|^n=r^n (\sqrt{\cos^2(\theta)+\sin^2(\theta)})^n=r^n(1)^n=r^n\]
\[|a+bi|^n=|(a+bi)^n| \text{ seems to hold }\]
I have to go right now. Thanks @freckles

Not the answer you are looking for?

Search for more explanations.

Ask your own question