Help with Continuity and End Behavior, please!

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Help with Continuity and End Behavior, please!

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

1 Attachment
1 Attachment
1 Attachment

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\(x^4\) will tend to positive infinity as x approaches pos/neg infinity. (because the power is even) When this is multiplied times -2, i.e. \((-2)\cdot x^4\), it then tends to negative infinity. (Roughly saying that: infinity × negative = - infinity)
3) Concave up parabola (opens up) It will decrease (negative slope) up to vertex, and from vertex and on it will increase (positive slope)
4) Decreases up to vertex, and from vertex and on increases.
So would 2 be A? Or am I misunderstanding?
|dw:1444355025772:dw|
let's graph h(x) = -2x^4 |dw:1444355037311:dw|
it kinda looks like a parabola, but it's not really a parabola
what happens when x gets larger and larger (approaching +infinity) ?
It stretches.
what happens to the y coordinate of the point?
It gets smaller?
y approaches -infinity I think is what you mean?
Yes
correct so h(x) --> -infinity as x --> infinity
how about as x --> -infinity
h(x) ---> infinity?
look at the graph
Oh -infinity
yes
So, c?
correct

Not the answer you are looking for?

Search for more explanations.

Ask your own question