marigirl
  • marigirl
could someone look over my integration by substitution steps?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
marigirl
  • marigirl
Question is to integrate \[\int\limits_{?}^{?} \frac{ 6x-1 }{ \sqrt{3x+1} }\]
marigirl
  • marigirl
i made u=3x+1 du/dx=3 so then dx=du/3
marigirl
  • marigirl
u=3x+1 \[x=\frac{ u-1 }{ 3 }\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

marigirl
  • marigirl
Now I have \[\int\limits_{?}^{?} \frac{ 6(\frac{ u-1 }{ 3 }) }{ \sqrt{u} } \times \frac{ du }{ 3 }\]
ganeshie8
  • ganeshie8
Now I have \[\int\limits_{?}^{?} \frac{ 6(\frac{ u-1 }{ 3 })\color{red}{-1} }{ \sqrt{u} } \times \frac{ du }{ 3 }\]
marigirl
  • marigirl
then i did \[\frac{ 1 }{ 3 }\int\limits_{?}^{?}\frac{ 2u-2 }{ \sqrt{u} }.du\]
ganeshie8
  • ganeshie8
then i did \[\frac{ 1 }{ 3 }\int\limits_{?}^{?}\frac{ 2u-2 \color{red}{-1}}{ \sqrt{u} }.du\]
marigirl
  • marigirl
omg yes i forgot the plus one!!
ganeshie8
  • ganeshie8
omg yes i forgot the \(\color{Red}{minus}\) one!!
marigirl
  • marigirl
pellet i miss typed it.. lol 6x+1 .. Sorry!!
marigirl
  • marigirl
\[\int\limits_{?}^{?}\frac{ 6x+1 }{ \sqrt{3x+1} }\]
marigirl
  • marigirl
so now we are at \[\frac{ 1 }{ 3 }\int\limits_{?}^{?}\frac{ 2u-1 }{ \sqrt{u} }\]
ganeshie8
  • ganeshie8
looks good, keep going..
marigirl
  • marigirl
then \[\frac{ 1 }{ 3 }\int\limits_{?}^{?} 2\sqrt{u} \times \frac{ 2 }{ \sqrt{u} }.du\]
marigirl
  • marigirl
then i integrated
ganeshie8
  • ganeshie8
do you mean \[\frac{ 1 }{ 3 }\int\limits_{?}^{?} 2\sqrt{u} - \frac{ 1 }{ \sqrt{u} }.du \]
marigirl
  • marigirl
\[\frac{ 1 }{ 3 } \times \frac{ 4u ^{\frac{ 3 }{ 2 }} }{ 3 }+4u ^{\frac{ 1 }{ 2 }}\]
marigirl
  • marigirl
oh gosh .....lol im a mess.. its a minus!
marigirl
  • marigirl
so then i think finally i did \[\frac{ 4u ^{\frac{ 3 }{ 2 }} }{ 9 }-\frac{ 4u ^{\frac{ 1 }{ 2 }} }{ 3 }\]
ganeshie8
  • ganeshie8
I think you should get \[\frac{ 1 }{ 3 } \left( \frac{ 4u ^{\frac{ 3 }{ 2 }} }{ 3 }-2u ^{\frac{ 1 }{ 2 }}\right)\]
marigirl
  • marigirl
yes cuz i did that error of not adding the plus one,..thanks so much! I really appreciate your time :D :D :D
ganeshie8
  • ganeshie8
np

Looking for something else?

Not the answer you are looking for? Search for more explanations.